精英家教网 > 高中数学 > 题目详情
设函数,其中
(I)当时,判断函数在定义域上的单调性;
(II)求函数的极值点;
(III)证明对任意的正整数n ,不等式都成立.


本题主要考查用导数法研究函数的单调性,基本思路是:当函数为增函数时,导数大于等于零;当函数为减函数时,导数小于等于零,(2)是不等式,需要关注两点,一是构造函数并运用函数的单调性证明不等式,二是根据解题要求选择是否分离变量.
(1)先求解定义域,求解导数得到结论。
(2)对于参数b进行分类讨论得到结论。
(3)令b=-1,然后构造函数求证不等式。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数 ,其中R.
(1)若曲线在点处的切线方程为,求函数的解析
式;
(2)当时,讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)求函数f(x)=- 2的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数).
①当时,求曲线在点处的切线方程;
②设的两个极值点,的一个零点.证明:存在实数,使得按某种顺序排列后构成等差数列,并求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

求函数的最小值是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知函数 (为非零常数,是自然对数的底数),曲线在点处的切线与轴平行.
(1)判断的单调性;
(2)若, 求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若上是增函数,求实数的取值范围;
(2)若的极值点,求上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数在区间内既有极大值,又有极小值,
则实数的取值范围是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等于(   )
A.1B.C.D.

查看答案和解析>>

同步练习册答案