精英家教网 > 高中数学 > 题目详情

对于函数f(x),若存在区间M=[a,b],使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的-个“好区间”.给出下列4个函数:
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好区间”的函数是________. (填入相应函数的序号)

②③④
分析:题目给出的是新定义题,定义的“好区间”是指的如果存在一个区间M=[a,b],使得以该区间为定义域的前提下,函数的值域也是该区间.
①对于函数f(x)=sinx,根据其在上是单调增函数,通过分析方程sinx=x在上仅有一解,在定义域其它范围内无解说明函数没有“好区间”;
②通过分析函数f(x)=|2x-1|的图象,知函数在[0,+∞)上是增函数,在该范围内取x∈[0,1]时,对应的函数值的范围也是[0,1],说明区间[0,1]是函数的一个好区间;
③通过对已知函数求导,分析出函数的单调区间,找到极大值点和极小值点,并求出极大值b和极小值a,而求得的
f(a)与f(b)在[a,b]范围内,所以[a,b]为该函数的一个“好区间”;
④根据函数在定义域内是单调函数,函数若有“好区间”,则方程f(x)=x应有两根,利用函数单调性,结合根的存在性定理判断即可.
解答:①函数f(x)=sinx在上是单调增函数,若函数在上存在“好区间”[a,b],
则必有sina=a,sinb=b.
即方程sinx=x有两个根,令g(x)=sinx-x,g(x)=cosx-1≤0在上恒成立,
所以函数g(x)在上为减函数,则函数g(x)=sinx-x在上至多有一个零点,
即方程sinx=x在上不可能有两个解,又因为f(x)的值域为[-1,1],所以当x<或x>时,
方程sinx=x无解.
所以函数f(x)=sinx没有“好区间”;
②对于函数f(x)=|2x-1|,该函数在[0,+∞)上是增函数,由幂函数的性质我们易得,M=[0,1]时,
f(x)∈[0,1]=M,所以M=[0,1]为函数f(x)=|2x-1|的一个“好区间”;
③对于函数f(x)=x3-3x,f(x)=3x2-3=3(x-1)(x+1).
当x∈(-1,1)时,f(x)0.
所以函数f(x)=x3-3x的增区间是(-∞,-1),(1,+∞),减区间是(-1,1).
取M=[-2,2],此时f(-2)=-2,f(-1)=2,f(1)=-2,f(2)=2.
所以函数f(x)=x3-3x在M=[-2,2]上的值域也为[-2,2],则M=[-2,2]为函数的一个“好区间”;
④函数f(x)=lgx+1在定义域(0,+∞)上为增函数,若有“好区间”
则lga+1=a,lgb+1=b,也就是函数g(x)=lgx-x+1有两个零点.
显然x=1是函数的一个零点,
<0,得x>,函数g(x)在上为减函数;
,得x<.函数在(0,)上为增函数.
所以g(x)的最大值为g()>g(1)=0,
则该函数g(x)在(0,)上还有一个零点.
所以函数f(x)=lgx+1存在“好区间”.
故答案为②③④.
点评:本题是新定义题,考查了函数的定义域与值域的关系,体现了数学转化思想,此题中单调函数存在好区间的条件是f(x)=x,正确理解“好区间”的定义是解答该题的关键,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于函数f(x),若存在区间M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列4个函数:
①f(x)=(x-1)2;②f(x)=|2x-1|;③f(x)=cos
π2
x
;④f(x)=ex.其中存在“稳定区间”的函数有
 
(填出所有满足条件的函数序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若在其定义域内存在两个实数a,b(a<b),使当x∈[a,b]时,f(x)的值域也是[a,b],则称函数f(x)为“科比函数”.若函数f(x)=k+
x+2
是“科比函数”,则实数k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数
f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2
(1)若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:
12
<m<1;
(2)若|x1|<2且|x1-x2|=2,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若f(x0)=x0,则称x0为f(x)的:“不动点”;若f[f(x0)]=x0,则称x0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f[f(x)]=x}.
(1)设函数f(x)=ax2+bx+c(a≠0),且A=∅,求证:B=∅;
(2)设函数f(x)=3x+4,求集合A和B,并分析能否根据(1)(2)中的结论判断A=B恒成立?若能,请给出证明,若不能,请举以反例.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0,则称x0为函数f(x)的不动点.若函数f(x)=
x2+a
bx-c
(b,c∈N*)有且仅有两个不动点0和2,且f(-2)<-
1
2

(1)试求函数f(x)的单调区间,
(2)已知各项不为0的数列{an}满足4Sn•f(
1
an
)=1,其中Sn表示数列{an}的前n项和,求证:(1-
1
an
)an+1
1
e
<(1-
1
an
)an

(3)在(2)的前题条件下,设bn=-
1
an
,Tn表示数列{bn}的前n项和,求证:T2011-1<ln2011<T2010

查看答案和解析>>

同步练习册答案