精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足a1=1,an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1(n>1).
(1)求数列{an}的通项公式;
(2)若an=1008,求n的值.

分析 (1)由an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1+$\frac{1}{n}$an,与原式相减求得$\frac{{a}_{n}+1}{{a}_{n}}$=$\frac{n+1}{n}$,采用累乘法即可求得数列{an}的通项公式;
(2)由(1)可知,将an=1008,代入即可求得n的值.

解答 解:(1)an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1
an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1+$\frac{1}{n}$an
两式相减得:an+1-an=$\frac{1}{n}$an,整理得:$\frac{{a}_{n}+1}{{a}_{n}}$=$\frac{n+1}{n}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-1}{n-2}$…$\frac{{a}_{2}}{{a}_{1}}$=$\frac{2}{1}$,
∴累乘得$\frac{{a}_{n}}{{a}_{n-1}}$×$\frac{{a}_{n-1}}{{a}_{n-2}}$×…×$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{1}$,
∴an=n,
求数列{an}的通项公式an=n;
(2)由(1)可知an=n,an=1008,
∴n=1008

点评 本题考查数列利用递推公式求通项公式的方法,考查累乘法的运用,考查分析问题及解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴正半轴为极轴.建立极坐标系,直线l的极坐标方程为ρ(cosθ+ksinθ)=-2(k为实数).
(1)判断曲线C1与直线l的位置关系,并说明理由;
(2)若曲线C1和直线l相交于A,B两点,且|AB|=$\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x+7|+|x-1|,对任意实数x,不等式f(x)≥m恒成立.
(1)求实数m的取值范围;
(2)当m取最大值时,解关于x的不等式:|x-3|-2x≤2m-12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知矩阵$[\begin{array}{l}{a}&{3}\\{1}&{a}\end{array}]$的逆矩阵是$[\begin{array}{l}{a}&{-3}\\{-1}&{a}\end{array}]$,则正实数a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆C的方程是(x-2)2+(y-2)2=4,动直线l:y=mx+(1-m)与圆C交于A,B两点,当△ABC面积取得最大值时,m的值为(  )
A.-1B.2C.-3D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a),若关于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰有一个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知$\vec a$=(4,2),$\vec b$=(6,y),且$\vec a$⊥$\vec b$,则y的值为(  )
A.-12B.-3C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.给定两个命题:p:对任意实数x,都有ax2+ax+1>0恒成立,q:函数y=3x-a在x∈[0,2]上有零点,如果(¬p)∧q为假命题,¬q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.极坐标系中,圆ρ=1上的点到直线ρcosθ+ρsinθ=2的距离最大值为(  )
A.$\sqrt{2}$B.$\sqrt{2}+1$C.$\sqrt{2}-1$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案