分析 (1)由an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1+$\frac{1}{n}$an,与原式相减求得$\frac{{a}_{n}+1}{{a}_{n}}$=$\frac{n+1}{n}$,采用累乘法即可求得数列{an}的通项公式;
(2)由(1)可知,将an=1008,代入即可求得n的值.
解答 解:(1)an=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1,
an+1=a1+$\frac{1}{2}$a2+$\frac{1}{3}$a3+…+$\frac{1}{n-1}$an-1+$\frac{1}{n}$an,
两式相减得:an+1-an=$\frac{1}{n}$an,整理得:$\frac{{a}_{n}+1}{{a}_{n}}$=$\frac{n+1}{n}$,
∴$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n}{n-1}$,$\frac{{a}_{n-1}}{{a}_{n-2}}$=$\frac{n-1}{n-2}$…$\frac{{a}_{2}}{{a}_{1}}$=$\frac{2}{1}$,
∴累乘得$\frac{{a}_{n}}{{a}_{n-1}}$×$\frac{{a}_{n-1}}{{a}_{n-2}}$×…×$\frac{{a}_{2}}{{a}_{1}}$=$\frac{n}{1}$,
∴an=n,
求数列{an}的通项公式an=n;
(2)由(1)可知an=n,an=1008,
∴n=1008
点评 本题考查数列利用递推公式求通项公式的方法,考查累乘法的运用,考查分析问题及解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 2 | C. | -3 | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -12 | B. | -3 | C. | 3 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{2}+1$ | C. | $\sqrt{2}-1$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com