精英家教网 > 高中数学 > 题目详情
3.在平面直角坐标系xOy中,圆:x2+y2=4,直线l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)为圆O内一点,弦MN过点A,过点O作MN的垂线交l于点P.
(1)若MN∥l.
       ①求直线MN的方程;
       ②求△PMN的面积.
(2)判断直线PM与圆O的位置关系,并证明.

分析 (1)①求出直线MN的斜率k=kAB=-$\frac{4}{3}$,由此能求出直线MN的方程.
②求出点O(0,0)到直线MN的距离d=1,从而MN=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{3}$,点O到直线l的距离|OP|=4,P到MN的距离h=4-1=3,由此能求出△PMN的面积S△PMN
(2)设M(x0,y0),则直线MN的斜率k=$\frac{5{y}_{0}-3}{5{x}_{0}-4}$,直线OP的斜率为-$\frac{5{x}_{0}-4}{5{y}_{0}-3}$,直线OP的方程为y=-$\frac{5{x}_{0}-4}{5{y}_{0}-3}x$,联立$\left\{\begin{array}{l}{y=-\frac{5{x}_{0}-4}{5{y}_{0}-3}x}\\{4x+3y-20=0}\end{array}\right.$,得点P($\frac{4(5{y}_{0}-3)}{4{y}_{0}-3{x}_{0}}$,-$\frac{4(5{x}_{0}-4)}{4{y}_{0}-3{x}_{0}}$),求出$\overrightarrow{PM}$,$\overrightarrow{OM}$,推导出$\overrightarrow{PM}•\overrightarrow{OM}$=0,从而PM⊥OM,进而直线PM与圆O相切.

解答 解:(1)①∵圆:x2+y2=4,直线l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)为圆O内一点,
弦MN过点A,MN∥l,
∴直线MN的斜率k=kAB=-$\frac{4}{3}$,
∴直线MN的方程为:y-$\frac{3}{5}$=-$\frac{4}{3}$(x-$\frac{4}{5}$),
整理,得:4x+3y-5=0.
②点O(0,0)到直线MN的距离d=$\frac{|0+0-5|}{\sqrt{16+9}}$=1,
MN=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{4-1}$=2$\sqrt{3}$,
点O到直线l的距离|OP|=$\frac{|0+0-20|}{\sqrt{16+9}}$=4,
∴P到MN的距离h=4-1=3,
∴△PMN的面积S△PMN=$\frac{1}{2}×MN×h$=$\frac{1}{2}×2\sqrt{3}×3$=3$\sqrt{3}$.
(2)直线PM与圆O相切,证明如下:
设M(x0,y0),则直线MN的斜率k=$\frac{{y}_{0}-\frac{3}{5}}{{x}_{0}-\frac{4}{5}}$=$\frac{5{y}_{0}-3}{5{x}_{0}-4}$,
∵OP⊥MN,∴直线OP的斜率为-$\frac{5{x}_{0}-4}{5{y}_{0}-3}$,
∴直线OP的方程为y=-$\frac{5{x}_{0}-4}{5{y}_{0}-3}x$,
联立$\left\{\begin{array}{l}{y=-\frac{5{x}_{0}-4}{5{y}_{0}-3}x}\\{4x+3y-20=0}\end{array}\right.$,解得点P的坐标为($\frac{4(5{y}_{0}-3)}{4{y}_{0}-3{x}_{0}}$,-$\frac{4(5{x}_{0}-4)}{4{y}_{0}-3{x}_{0}}$),
∴$\overrightarrow{PM}$=($\frac{4(5{y}_{0}-3)}{4{y}_{0}-3{x}_{0}}-{x}_{0}$,-$\frac{4(5{x}_{0}-4)}{4{y}_{0}-3{x}_{0}}-{y}_{0}$),
∵$\overrightarrow{OM}$=(x0,y0),${{x}_{0}}^{2}+{{y}_{0}}^{2}=4$,
∴$\overrightarrow{PM}•\overrightarrow{OM}$=$\frac{4{x}_{0}(5{y}_{0}-3)}{4{y}_{0}-3{x}_{0}}-{{x}_{0}}^{2}-\frac{4{y}_{0}(5{x}_{0}-4)}{4{y}_{0}-3{x}_{0}}-{{y}_{0}}^{2}$
=$\frac{4{x}_{0}(5{y}_{0}-3)-4{y}_{0}(5{x}_{0}-4)}{4{y}_{0}-3{x}_{0}}$-4
=$\frac{-12{x}_{0}+16{y}_{0}}{4{y}_{0}-3{x}_{0}}-4$=0,
∴$\overrightarrow{PM}$⊥$\overrightarrow{OM}$,∴PM⊥OM.
∴直线PM与圆O相切.

点评 本题考查直线方程的求法,考查三角形面积的求法,考查直线与圆的位置关系的判断与证明,考查圆、直线方程、点到直线距离公式、向量等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为2ρsinθ+ρcosθ=10,曲线C1:$\left\{\begin{array}{l}{x=3cosα}\\{y=2sinα}\end{array}\right.$(α为参数).
(1)求曲线C1的普通方程;
(2)若点M在曲线C1上运动,试求出M到曲线C的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn),由这些数据得到的回归直线l的方程为$\widehat{y}$=$\widehat{b}x+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,则下列各点中一定在l上的是(  )
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点(0,2)关于直线l:x+y-1=0的对称点的坐标为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m是给定的一个常数,若直线x-3y+m=0上存在两点A,B,使得点P(m,0)满足|PA|=|PB|,则线段AB的中点坐标是($\frac{4m}{5}$,$\frac{3m}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲射击命中目标的概率为$\frac{1}{2}$,乙射击命中目标的概率为$\frac{1}{3}$.现在两人同时射击目标,则目标被击中的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,过点A(4,-$\frac{π}{2}$)引圆ρ=4sinθ的一条切线,则切线长为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$??(θ为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax-lnx-1.
(1)若函数f(x)在区间[1,+∞)上递增,求实数a的取值范围;
(2)求证:$ln(n+2)<1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n+1}\;(n∈{N^*})$.

查看答案和解析>>

同步练习册答案