| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
分析 目标被击中的对立事件是甲、乙二人都没有击中,由此利用对立事件概率计算公式能求出目标被击中的概率.
解答 解:设事件A表示“甲射击命中目标”,事件B表示“乙射击命中目标”,
则P(A)=$\frac{1}{2}$,P(B)=$\frac{1}{3}$,
目标被击中的对立事件是甲、乙二人都没有击中,
∴目标被击中的概率:
p=1-[1-P(A)][1-P(B)]
=1-$\frac{1}{2}×\frac{2}{3}$
=$\frac{2}{3}$.
∴目标被击中的概率是$\frac{2}{3}$.
故选:C.
点评 本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\sqrt{7}$,0) | B. | (0,-$\sqrt{7}$) | C. | (-5,0) | D. | (-4,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ②③ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | (3,+∞) | C. | $(0,\frac{1}{3})$ | D. | $(\frac{1}{3},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $1-\frac{1}{4^n}$ | B. | $\frac{1}{4}({4^n}-1)$ | C. | $\frac{3}{2}(1-\frac{1}{2^n})$ | D. | $\frac{1}{16}(1-\frac{1}{4^n})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com