精英家教网 > 高中数学 > 题目详情
8.甲射击命中目标的概率为$\frac{1}{2}$,乙射击命中目标的概率为$\frac{1}{3}$.现在两人同时射击目标,则目标被击中的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 目标被击中的对立事件是甲、乙二人都没有击中,由此利用对立事件概率计算公式能求出目标被击中的概率.

解答 解:设事件A表示“甲射击命中目标”,事件B表示“乙射击命中目标”,
则P(A)=$\frac{1}{2}$,P(B)=$\frac{1}{3}$,
目标被击中的对立事件是甲、乙二人都没有击中,
∴目标被击中的概率:
p=1-[1-P(A)][1-P(B)]
=1-$\frac{1}{2}×\frac{2}{3}$
=$\frac{2}{3}$.
∴目标被击中的概率是$\frac{2}{3}$.
故选:C.

点评 本题考查概率的求法,考查对立事件概率计算公式等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.求下列函数的全微分.
(1)z=ln(3x-2y);
(2)z=$\frac{x+y}{x-y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的首项a1=t,其前n项和为Sn,且满足Sn+Sn+1=n2+2n,若对?n∈N*,an<an+1恒成立,则实数t的取值范围是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-3|+3
(1)求不等式f(x)<2x的解集
(2)求不等式f(x)<6-|x-2|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,圆:x2+y2=4,直线l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)为圆O内一点,弦MN过点A,过点O作MN的垂线交l于点P.
(1)若MN∥l.
       ①求直线MN的方程;
       ②求△PMN的面积.
(2)判断直线PM与圆O的位置关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)的左焦点的坐标是(  )
A.(-$\sqrt{7}$,0)B.(0,-$\sqrt{7}$)C.(-5,0)D.(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下命题中,真命题有(  )
①对两个变量y和x进行回归分析,由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心($\overline{x}$,$\overline{y}$);
②若数据x1,x2,x3,…,xn的方差为2,则2x1,2x2,2x3,…,2xn的方差为4;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a$,其中a>0,若函数f(x)在区间(-2,0)内恰好有两个零点,则实数a的取值范围是(  )
A.(0,3)B.(3,+∞)C.$(0,\frac{1}{3})$D.$(\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}满足an+1=2an,且${a_3}-{a_1}=2\sqrt{3}$,则$\frac{1}{a_1^2}+\frac{1}{a_2^2}+…+\frac{1}{a_n^2}$=(  )
A.$1-\frac{1}{4^n}$B.$\frac{1}{4}({4^n}-1)$C.$\frac{3}{2}(1-\frac{1}{2^n})$D.$\frac{1}{16}(1-\frac{1}{4^n})$

查看答案和解析>>

同步练习册答案