精英家教网 > 高中数学 > 题目详情
13.椭圆$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)的左焦点的坐标是(  )
A.(-$\sqrt{7}$,0)B.(0,-$\sqrt{7}$)C.(-5,0)D.(-4,0)

分析 根据题意,由椭圆的参数方程可得椭圆的普通方程,进而由椭圆的几何性质可得c的值,由椭圆的焦点坐标公式计算可得答案.

解答 解:根据题意,椭圆的参数方程为:$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$,
其普通方程为:$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,
其中a=4,b=3,
则c=$\sqrt{16-9}$=$\sqrt{7}$,
即该椭圆的左焦点坐标为(-$\sqrt{7}$,0);
故选:A.

点评 本题考查椭圆的参数方程,关键是将椭圆的参数方程变形为普通方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-5<x<2},B={x|x>1},则A∪B等于(  )
A.{x|x>-5}B.{x|-5<x<1}C.{x|x>1}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设非零实数a,b满足a<b,则下列不等式中一定成立的是(  )
A.$\frac{1}{a}$$>\frac{1}{b}$B.ab<b2C.a2<b2D.a-b<0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,已知AB=AC=4,BC=2,∠B的平分线交AC于点D,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为-$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲射击命中目标的概率为$\frac{1}{2}$,乙射击命中目标的概率为$\frac{1}{3}$.现在两人同时射击目标,则目标被击中的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列选项叙述错误的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
B.若命题p:?x∈R,x2+x+1≠0,则?p:?x∈R,x2+x+1=0
C.若p∨q为真命题,则p,q均为真命题
D.若命题q:?x∈R,x2+mx+1>0为真命题,则m的取值范围为-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设D为△ABC所在平面内一点$\overrightarrow{BC}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(B组题)设函数f(x)=Asin(ωx+φ)(其中A,ω,φ是常数).若函数f(x)在区间$[{-\frac{π}{4},\frac{π}{4}}]$上具有单调性,且$f(-\frac{π}{2})=f(-\frac{π}{4})=-f(\frac{π}{4})$,则f(x)的对称中心坐标为($\frac{3kπ}{4}$,0)(其中k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3,4},B={x|x2-3<0},则A∩B=(  )
A.{1}B.{1,2}C.{1,2,3}D.{1,2,3,4}

查看答案和解析>>

同步练习册答案