精英家教网 > 高中数学 > 题目详情
5.设D为△ABC所在平面内一点$\overrightarrow{BC}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$

分析 $\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CD}$=$\overrightarrow{AC}$+$\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AC}$+$\frac{1}{3}(\overrightarrow{BA}+\overrightarrow{AC})$=$\frac{4}{3}\overrightarrow{AC}$-$\frac{1}{3}\overrightarrow{AB}$.

解答 解:如图,$\overrightarrow{AD}=\overrightarrow{AC}+\overrightarrow{CD}$=$\overrightarrow{AC}$+$\frac{1}{3}\overrightarrow{BC}$=$\overrightarrow{AC}$+$\frac{1}{3}(\overrightarrow{BA}+\overrightarrow{AC})$
=$\frac{4}{3}\overrightarrow{AC}$-$\frac{1}{3}\overrightarrow{AB}$,

故选:D.

点评 本题考查向量的线性运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.若“?x∈[$\frac{1}{2}$,2],使得2x2-λx+1<0成立”是假命题,则实数λ的取值范围为(-∞,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-3|+3
(1)求不等式f(x)<2x的解集
(2)求不等式f(x)<6-|x-2|的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.椭圆$\left\{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数)的左焦点的坐标是(  )
A.(-$\sqrt{7}$,0)B.(0,-$\sqrt{7}$)C.(-5,0)D.(-4,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下命题中,真命题有(  )
①对两个变量y和x进行回归分析,由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心($\overline{x}$,$\overline{y}$);
②若数据x1,x2,x3,…,xn的方差为2,则2x1,2x2,2x3,…,2xn的方差为4;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lgx,x>0}\end{array}\right.$,若函数y=|f(x)|-a有4个零点x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是(  )
A.(0,$\frac{81}{10}$]B.(0,$\frac{101}{10}$]C.(0,+∞)D.(2,$\frac{81}{10}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数函数$f(x)=\frac{1}{3}{x^3}+\frac{1-a}{2}{x^2}-ax-a$,其中a>0,若函数f(x)在区间(-2,0)内恰好有两个零点,则实数a的取值范围是(  )
A.(0,3)B.(3,+∞)C.$(0,\frac{1}{3})$D.$(\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在等差数列{an}中,公差为d,前n项和为Sn
(1)已知a1=2,d=3,求a10
(2)已知S10=110,S20=420,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和Sn=2an-2n+1
(1)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(2)设bn=$\frac{{2}^{2n+1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案