精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{lgx,x>0}\end{array}\right.$,若函数y=|f(x)|-a有4个零点x1,x2,x3,x4,则x1+x2+x3+x4的取值范围是(  )
A.(0,$\frac{81}{10}$]B.(0,$\frac{101}{10}$]C.(0,+∞)D.(2,$\frac{81}{10}$]

分析 作出函数y=|f(x)|的图象和直线y=a,由图象可得x1+x2=-2,-lgx3=lgx4,可得x3x4=1,且1<x4≤10,运用对勾函数的单调性,即可得到所求范围.

解答 解:若函数y=|f(x)|-a有4个零点x1,x2,x3,x4
作出函数y=|f(x)|的图象和直线y=a,
由图象可得x1+x2=-2,-lgx3=lgx4,即为lgx3+lgx4=0,
可得x3x4=1,且0<lgx4≤1,即为1<x4≤10,
则x3+x4=$\frac{1}{{x}_{4}}$+x4在(1,10]递增,
可得x1+x2+x3+x4=-2+$\frac{1}{{x}_{4}}$+x4∈(-2+2,-2+10+$\frac{1}{10}$],
即为(0,$\frac{81}{10}$].
故选:A.

点评 本题考查函数的零点的范围,考查数形结合的思想方法,以及对勾函数的单调性的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.参数方程$\left\{\begin{array}{l}x=1+\frac{1}{t}\\ y=1-\frac{1}{t}\end{array}\right.$(t为参数),化为一般方程为x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,已知AB=AC=4,BC=2,∠B的平分线交AC于点D,则$\overrightarrow{AC}$•$\overrightarrow{BD}$的值为-$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列选项叙述错误的是(  )
A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1”
B.若命题p:?x∈R,x2+x+1≠0,则?p:?x∈R,x2+x+1=0
C.若p∨q为真命题,则p,q均为真命题
D.若命题q:?x∈R,x2+mx+1>0为真命题,则m的取值范围为-2<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设D为△ABC所在平面内一点$\overrightarrow{BC}$=3$\overrightarrow{CD}$,则(  )
A.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的前n项的和为Sn,且Sn+$\frac{1}{2}$an=1(n∈N*
(1)求{an}的通项公式;
(2)设bn=-log3(1-Sn),设Cn=$\frac{4{b}_{n+1}}{{{b}_{n}}^{2}•{{b}^{2}}_{n+2}}$,求数列{Cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(B组题)设函数f(x)=Asin(ωx+φ)(其中A,ω,φ是常数).若函数f(x)在区间$[{-\frac{π}{4},\frac{π}{4}}]$上具有单调性,且$f(-\frac{π}{2})=f(-\frac{π}{4})=-f(\frac{π}{4})$,则f(x)的对称中心坐标为($\frac{3kπ}{4}$,0)(其中k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a>b,则下列不等式中正确的是(  )
A.$\frac{1}{a}>\frac{1}{b}$B.a+c>b+cC.ac2>bc2D.a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:四棱锥P-ABCD的底面为直角梯形,且AB∥CD,△DAB=90°,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点D.
(1)若PA=AD,求PB与平面PAD的所成角大小;
(2)问$\frac{PA}{AD}$多大时,AM⊥平面PDB可能成立.

查看答案和解析>>

同步练习册答案