精英家教网 > 高中数学 > 题目详情
14.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn),由这些数据得到的回归直线l的方程为$\widehat{y}$=$\widehat{b}x+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,则下列各点中一定在l上的是(  )
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

分析 根据线性回归方程过样本中心点,即可得出答案.

解答 解:根据题意,回归直线l的方程$\widehat{y}$=$\widehat{b}x+\widehat{a}$过样本中心点($\overline{x}$,$\overline{y}$).
故选:A.

点评 本题考查了线性回归直线过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足:${a_1}=2,{a_2}=\frac{2}{3},{a_n}=\frac{{2{a_{n-1}}{a_{n+1}}}}{{{a_{n-1}}+{a_{n+1}}}}\;(n∈{N^*},n≥2)$.
(1)求证:数列$\{\;\frac{1}{a_n}\;\}$为等差数列;
(2)求数列$\{\;\frac{a_n}{2n+1}\;\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.求直线l:3x-y-6=0被圆C:(x-1)2+(y-2)2=5截得的弦AB的长为  (  )
A.2B.$4\sqrt{2}$C.$\sqrt{10}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国魏晋时期的数学家刘徽在《九章算术注》中首创割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形割圆,通过逐步增加正多边形的边数而使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率,如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(数据sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)(  )
A.3,3.1248,3.1320B.3,3.1056,3.1248C.3,3.1056,3.1320D.3,3.1,3.140

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\int{\begin{array}{l}1\\ 0\end{array}}({e^x}+2x)$=e.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的首项a1=t,其前n项和为Sn,且满足Sn+Sn+1=n2+2n,若对?n∈N*,an<an+1恒成立,则实数t的取值范围是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x/℃101113128
发芽数y/颗2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,圆:x2+y2=4,直线l:4x+3y-20=0.A($\frac{4}{5}$,$\frac{3}{5}$)为圆O内一点,弦MN过点A,过点O作MN的垂线交l于点P.
(1)若MN∥l.
       ①求直线MN的方程;
       ②求△PMN的面积.
(2)判断直线PM与圆O的位置关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为(  )
A.200,20B.400,40C.200,40D.400,20

查看答案和解析>>

同步练习册答案