2£®ÎÒ¹úκ½úʱÆÚµÄÊýѧ¼ÒÁõ»ÕÔÚ¡¶¾ÅÕÂËãÊõ×¢¡·ÖÐÊ×´´¸îÔ²Êõ£º¡°¸îÖ®ÃÖϸ£¬ËùʧÃÖÉÙ£¬¸îÖ®ÓָÒÔÖÁÓÚ²»¿É¸î£¬ÔòÓëÔ²ºÏÌ壬¶øÎÞËùʧÒÓ¡±£¬¼´Í¨¹ýÔ²ÄÚ½ÓÕý¶à±ßÐθîÔ²£¬Í¨¹ýÖð²½Ôö¼ÓÕý¶à±ßÐεıßÊý¶øÊ¹Õý¶à±ßÐεÄÖܳ¤ÎÞÏÞ½Ó½üÔ²µÄÖܳ¤£¬½ø¶øÀ´ÇóµÃ½ÏΪ¾«È·µÄÔ²ÖÜÂÊ£¬ÈçͼÊÇÀûÓÃÁõ»ÕµÄ¡°¸îÔ²Êõ¡±Ë¼ÏëÉè¼ÆµÄÒ»¸ö³ÌÐò¿òͼ£¬ÆäÖÐn±íʾԲÄÚ½ÓÕý¶à±ßÐεıßÊý£¬Ö´ÐдËËã·¨Êä³öµÄÔ²ÖÜÂʵĽüËÆÖµÒÀ´ÎΪ£¨Êý¾Ýsin15¡ã¡Ö0.2588£¬sin10¡ã¡Ö0.1736£¬sin7.50¡Ö0.1306£©£¨¡¡¡¡£©
A£®3£¬3.1248£¬3.1320B£®3£¬3.1056£¬3.1248C£®3£¬3.1056£¬3.1320D£®3£¬3.1£¬3.140

·ÖÎö ÁгöÑ­»·¹ý³ÌÖÐSÓënµÄÊýÖµ£¬Âú×ãÅжϿòµÄÌõ¼þ¼´¿É½áÊøÑ­»·£®

½â´ð ½â£ºÄ£ÄâÖ´ÐгÌÐò£¬¿ÉµÃ£º
n=6£¬S=6sin30¡ã=3£¬Êä³öSµÄֵΪ3£¬
²»Âú×ãÌõ¼þn¡Ý18£¬Ö´ÐÐÑ­»·Ì壬n=12£¬S=12¡Ásin15¡ã=3.1056£¬Êä³öSµÄֵΪ3.1056£¬
²»Âú×ãÌõ¼þn¡Ý18£¬Ö´ÐÐÑ­»·Ì壬n=24£¬S=24¡Ásin7.5¡ã=3.1320£¬Êä³öSµÄֵΪ3.1320£¬
Âú×ãÌõ¼þn¡Ý18£¬Í˳öÑ­»·£®
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÑ­»·¿òͼµÄÓ¦Ó㬿¼²éÁ˼ÆËãÄÜÁ¦£¬×¢ÒâÅжϿòµÄÌõ¼þµÄÓ¦Óã¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÅ×ÎïÏßC£ºy2=4x½¹µãΪF£¬µãDΪÆä×¼ÏßÓëxÖáµÄ½»µã£¬¹ýµãFµÄÖ±ÏßlÓëÅ×ÎïÏßÏཻÓÚA£¬BÁ½µã£¬Ôò¡÷DABµÄÃæ»ýSµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®[5£¬+¡Þ£©B£®[2£¬+¡Þ£©C£®[4£¬+¡Þ£©D£®[2£¬4]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÒÔÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ2¦Ñsin¦È+¦Ñcos¦È=10£¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=3cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£»
£¨2£©ÈôµãMÔÚÇúÏßC1ÉÏÔ˶¯£¬ÊÔÇó³öMµ½ÇúÏßCµÄ¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êxOyÖУ¬ÒÑÖªÔ²C1£ºx2+y2=4£¬Ô²C2£º£¨x-2£©2+y2=4£®
£¨1£©ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬·Ö±ðÇóÔ²C1£¬C2µÄ¼«×ø±ê·½³Ì£»
£¨2£©ÇóÔ²C1ÓëC2µÄ¹«¹²ÏҵIJÎÊý·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÏÂÁвÎÊý·½³ÌÄÜÓë·½³Ìy2=x±íʾͬһÇúÏßµÄÊÇ£¨¡¡¡¡£©
A£®$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$£¨tΪ²ÎÊý£©
B£®$\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$£¨tΪ²ÎÊý£©
C£®$\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$£¨tΪ²ÎÊý£©
D£®$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$£¨tΪ²ÎÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÅжϾÓÃñ»§ÊÇ·ñС¿µµÄÒ»¸öÖØÒªÖ¸±êÊǾÓÃñ»§µÄÄêÊÕÈ룬ijÊдÓÏ½ÇøÄÚËæ»ú³éÈ¡100¸ö¾ÓÃñ»§£¬¶Ôÿ¸ö¾ÓÃñ»§µÄÄêÊÕÈëÓëÄê½áÓàµÄÇé¿ö½øÐзÖÎö£¬ÉèµÚi¸ö¾ÓÃñ»§µÄÄêÊÕÈëxi£¨ÍòÔª£©£¬Äê½áÓàyi£¨ÍòÔª£©£¬¾­¹ýÊý¾Ý´¦ÀíµÄ£º$\sum_{i=1}^{100}{x}_{i}$=400£¬$\sum_{i=1}^{100}{y}_{i}$=100£¬$\sum_{i=1}^{100}{x}_{i}{y}_{i}$=900£¬$\sum_{i=1}^{100}{{x}^{2}}_{i}$=2850£®
£¨1£©ÒÑÖª¼ÒÍ¥µÄÄê½áÓày¶ÔÄêÊÕÈëx¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµ£¬ÇóÏßÐԻع鷽³Ì£»
£¨2£©Èô¸ÃÊеľÓÃñ»§Äê½áÓ಻µÍÓÚ5Íò£¬¼´³Æ¸Ã¾ÓÃñ»§ÒÑ´ïС¿µÉú»î£¬ÇëÔ¤²â¾ÓÃñ»§´ïµ½Ð¡¿µÉú»îµÄ×îµÍÄêÊÕÈëӦΪ¶àÉÙÍòÔª£¿
¸½£ºÔÚy=bx+aÖУ¬b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}^{2}}_{i}-n{\overline{x}}^{2}}$£¬a=$\overline{y}-b\overline{x}$£¬ÆäÖÐ$\overline{x}$£¬$\overline{y}$ΪÑù±¾Æ½¾ùÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÁ½¸ö¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµµÄ±äÁ¿µÄÒ»×éÊý¾Ý£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¡­£¬£¨xn£¬yn£©£¬ÓÉÕâЩÊý¾ÝµÃµ½µÄ»Ø¹éÖ±ÏßlµÄ·½³ÌΪ$\widehat{y}$=$\widehat{b}x+\widehat{a}$£¬Èô$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$£¬$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$£¬ÔòÏÂÁи÷µãÖÐÒ»¶¨ÔÚlÉϵÄÊÇ£¨¡¡¡¡£©
A£®£¨$\overline{x}$£¬$\overline{y}$£©B£®£¨$\overline{x}$£¬0£©C£®£¨0£¬$\overline{y}$£©D£®£¨0£¬0£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µã£¨0£¬2£©¹ØÓÚÖ±Ïßl£ºx+y-1=0µÄ¶Ô³ÆµãµÄ×ø±êΪ£¨-1£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\sqrt{3}cos¦È}\\{y=sin¦È}\end{array}\right.$??£¨¦ÈΪ²ÎÊý£©£®ÒÔÔ­µãOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨¦È+$\frac{¦Ð}{4}$£©=$\sqrt{2}$
£¨1£©Ð´³öÇúÏßCµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸