精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标xOy中,已知圆C1:x2+y2=4,圆C2:(x-2)2+y2=4.
(1)在以O为极点,x轴正半轴为极轴的极坐标系中,分别求圆C1,C2的极坐标方程;
(2)求圆C1与C2的公共弦的参数方程.

分析 (1)由x2+y22,ρsinθ=y,ρcosθ=x,能求出圆C1,C2的极坐标方程.
(2)联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=4}\\{(x-2)^{2}+{y}^{2}=4}\end{array}\right.$,求出圆C1,C2交点直角坐标为$(1,\;\;\sqrt{3}),\;\;(1,-\sqrt{3})$,由此能求出圆C1与C2的公共弦的参数方程.

解答 解:(1)∵圆C1:x2+y2=4,
∴C1的极坐标方程为ρ=2,
∵圆C2:(x-2)2+y2=4,即x2+y2-4x=0,
∴圆C2的极坐标方程为ρ=4cosθ.…(4分)
(2)联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=4}\\{(x-2)^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=\sqrt{3}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=1}\\{y=-\sqrt{3}}\end{array}\right.$,
∴圆C1,C2交点直角坐标为$(1,\;\;\sqrt{3}),\;\;(1,-\sqrt{3})$. …(7分)
故圆C1与C2的公共弦的参数方程为$\left\{\begin{array}{l}x=1\\ y=t(-\sqrt{3}≤t≤\sqrt{3})\end{array}\right.$…(10分)
注:第(1)小题中交点的极坐标表示不唯一;第(2)小题的结果中,若未注明参数范围,扣(2分).

点评 本题考查圆的极坐标方程的求法,考查两圆的公共弦的参数方程的求法,考查直角坐标方程、参数方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=x2+mx-m(x∈R)同时满足:
①在定义域内存在0<x1<x2,使得f(x1)>f(x2)成立;
②不等式f(x)≤0的解集有且只有一个元素;数列{an}的前n项和为Sn,Sn=f(n),n≥1,n∈N.
(1)求f(x)的表达式;
(2)求数列{an}的通项公式;
(3)设${b_n}={(\sqrt{2})^{{a_n}+5}}$,${c_n}=\frac{{6b_n^2+{b_{n+1}}-{b_n}}}{{{b_n}{b_{n+1}}}}$,{cn}的前n项和为Tn,若Tn>3n+k对任意n∈N,且n≥2恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将下列复数化为指数形式和极坐标形式.
(1)$\sqrt{2}$(cos$\frac{π}{4}$+isin$\frac{π}{4}$)
(2)cos75°-isin75°
(3)-cos$\frac{2π}{3}$+isin$\frac{2π}{3}$
(4)-cos1+isin1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的全微分.
(1)z=ln(3x-2y);
(2)z=$\frac{x+y}{x-y}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.求直线l:3x-y-6=0被圆C:(x-1)2+(y-2)2=5截得的弦AB的长为  (  )
A.2B.$4\sqrt{2}$C.$\sqrt{10}$D.$2\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若“?x∈[$\frac{1}{2}$,2],使得2x2-λx+1<0成立”是假命题,则实数λ的取值范围为(-∞,2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.我国魏晋时期的数学家刘徽在《九章算术注》中首创割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”,即通过圆内接正多边形割圆,通过逐步增加正多边形的边数而使正多边形的周长无限接近圆的周长,进而来求得较为精确的圆周率,如图是利用刘徽的“割圆术”思想设计的一个程序框图,其中n表示圆内接正多边形的边数,执行此算法输出的圆周率的近似值依次为(数据sin15°≈0.2588,sin10°≈0.1736,sin7.50≈0.1306)(  )
A.3,3.1248,3.1320B.3,3.1056,3.1248C.3,3.1056,3.1320D.3,3.1,3.140

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的首项a1=t,其前n项和为Sn,且满足Sn+Sn+1=n2+2n,若对?n∈N*,an<an+1恒成立,则实数t的取值范围是($\frac{1}{4}$,$\frac{3}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下命题中,真命题有(  )
①对两个变量y和x进行回归分析,由样本数据得到的回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$必过样本点的中心($\overline{x}$,$\overline{y}$);
②若数据x1,x2,x3,…,xn的方差为2,则2x1,2x2,2x3,…,2xn的方差为4;
③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1.
A.①②B.①③C.②③D.①②③

查看答案和解析>>

同步练习册答案