精英家教网 > 高中数学 > 题目详情
6.冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日期12月1日12月2日12月3日12月4日12月5日
温差x/℃101113128
发芽数y/颗2325302616
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(Ⅰ)求选取的2组数据恰好是相邻2天数据的概率;
(Ⅱ)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.)

分析 (Ⅰ)用列举法求基本事件数,计算所求的概率值;
(Ⅱ)由数据计算$\overline{x}$、$\overline{y}$,求出回归系数,写出回归方程;
(Ⅲ)计算x=10时$\widehat{y}$的值和x=8时$\widehat{y}$的值,再比较得出结论.

解答 解:(Ⅰ)设抽到不相邻的两组数据为事件A,
从5组数据中选取2组数据共有10种情况:
(1,2),(1,3),(1,4),(1,5),(2,3),
(2,4),(2,5),(3,4),(3,5),(4,5),
其中数据为12月份的日期数,每种情况都是可能出现的,
事件A包括的基本事件有6种;
∴P(A)=$\frac{6}{10}$=$\frac{3}{5}$;
∴选取的2组数据恰好是不相邻2天数据的概率是$\frac{3}{5}$;
(Ⅱ)由数据,求得$\overline{x}$=$\frac{1}{3}$×(11+13+12)=12,
$\overline{y}$=$\frac{1}{3}$×(25+30+26)=27,
由公式,求得$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{(-1)×(-2)+1×3+0×(-1)}{{(-1)}^{2}{+1}^{2}{+0}^{2}}$=2.5,
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=27-2.5×12=-3,
∴y关于x的线性回归方程为$\widehat{y}$=2.5x-3;
(Ⅲ)当x=10时,$\widehat{y}$=2.5×10-3=22,|22-23|<2;
同样当x=8时,$\widehat{y}$=2.5×8-3=17,|17-16|<2;
∴(Ⅱ)中所得的线性回归方程可靠.

点评 本题考查了线性回归方程和列举法求概率的应用问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.下表是检测某种浓度的农药随时间x(秒)渗入某种水果表皮深度y(微米)的一组结果.
时间x(秒)510152030
深度y(微米)610101316
(1)在规定的坐标系中,画出 x,y 的散点图;
(2)求y与x之间的回归方程,并预测40秒时的深度(回归方程精确到小数点后两位;预测结果精确到整数).
回归方程:$\widehat{y}$=bx+a,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列参数方程能与方程y2=x表示同一曲线的是(  )
A.$\left\{{\begin{array}{l}{x=t}\\{y={t^2}}\end{array}}\right.$(t为参数)
B.$\left\{{\begin{array}{l}{x={{sin}^2}t}\\{y=sint}\end{array}}\right.$(t为参数)
C.$\left\{\begin{array}{l}x=\frac{1-cos2t}{1+cos2t}\\ y=tant\end{array}\right.$(t为参数)
D.$\left\{\begin{array}{l}{x=t}\\{y=\sqrt{|t|}}\end{array}\right.$(t为参数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn),由这些数据得到的回归直线l的方程为$\widehat{y}$=$\widehat{b}x+\widehat{a}$,若$\overline{x}$=$\frac{1}{n}\sum_{i=1}^{n}{x}_{i}$,$\overline{y}$=$\frac{1}{n}\sum_{i=1}^{n}{y}_{i}$,则下列各点中一定在l上的是(  )
A.($\overline{x}$,$\overline{y}$)B.($\overline{x}$,0)C.(0,$\overline{y}$)D.(0,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|2x-1|-|ax+2|,.
(Ⅰ)当a=1时,求不等式f(x)>0的解集;
(Ⅱ)当a=2时,若?x0∈R,使f(x0)<4m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.点(0,2)关于直线l:x+y-1=0的对称点的坐标为(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m是给定的一个常数,若直线x-3y+m=0上存在两点A,B,使得点P(m,0)满足|PA|=|PB|,则线段AB的中点坐标是($\frac{4m}{5}$,$\frac{3m}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在极坐标系中,过点A(4,-$\frac{π}{2}$)引圆ρ=4sinθ的一条切线,则切线长为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点(x,y)满足曲线方程$\left\{\begin{array}{l}x=4+\sqrt{2}cosθ\\ y=6+\sqrt{2}sinθ\end{array}\right.$(θ为参数),则$\frac{y}{x}$的最小值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{3}{2}$C.$\sqrt{3}$D.1

查看答案和解析>>

同步练习册答案