精英家教网 > 高中数学 > 题目详情
四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,且PD=
2
AB
,点E为PB的中点,则AE与平面PDB所成的角的大小为______.
连接AC,BD,交于O,连接OE,则
∵PD⊥底面ABCD,AC?底面ABCD,
∴PD⊥AC,
∵四棱锥P-ABCD的底面是正方形,
∴AC⊥BD
∵PD∩BD=D
∴AC⊥平面PDB
∴∠AEO为AE与平面PDB所成的角,
设AB=a,则PD=
2
a,∴OE=
2
2
a

∵AO=
2
2
a
,∴AE=a,
∴sin∠AEO=
AO
AE
=
2
2

∴∠AEO=45°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知几何体A-BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求此几何体的体积V的大小;
(2)求异面直线DE与AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方体ABCD-A1B1C1D1的棱长为a.
(1)求A1B与B1C所成的角
(2)求点D到B1C的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图是无盖正方体纸盒的展开图,在原正方体中直线AB,CD所成角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在侧棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E与直线AA1的交点.
(1)证明:
(i)EFA1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知四棱柱ABCD-A1B1C1D1,侧棱与底面垂直,底面ABCD是菱形且∠BAD=60°,侧棱与底面边长均为2,则面AB1C与底面A1B1C1D1,ABCD所成角的正弦值为(  )
A.
1
2
B.2C.
5
5
D.
2
5
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

下图是几何体ABC-A1B1C1的三视图和直观图.M是CC1上的动点,N,E分别是AM,A1B1的中点.
(1)求证:NE平面BB1C1C;
(2)当M在CC1的什么位置时,B1M与平面AA1C1C所成的角是30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正方体ABCD-A1B1C1D1,则直线AB与平面BDA1所成角的正弦值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A′B′C′D′中,直线BC′与平面A′BD所成的角的余弦值等于(  )
A.
2
4
B.
3
3
C.
2
3
D.
3
2

查看答案和解析>>

同步练习册答案