精英家教网 > 高中数学 > 题目详情
15.已知等差数列{an}的公差d≠0,它的前n项和为Sn,若S5=70,且a1,a7,a37成等比数列.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和为Tn

分析 (1)由等差数列的通项公式和前n项和公式列出方程组,求出首项和公差,由此能求出数列{an}的通项公式.
(2)由(1)得${S_n}=2{n^2}+4n$,从而$\frac{1}{{S}_{n}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$,由此利用裂项求和法能求出数列$\left\{{\frac{1}{S_n}}\right\}$的前n项和.

解答 解:(1)因为数列{an}是等差数列,
所以an=a1+(n-1)d,${S_n}=n{a_1}+\frac{{n({n-1})}}{2}d$. …(1分)
依题意,有$\left\{\begin{array}{l}{{S}_{5}=5{a}_{1}+10d=70}\\{({a}_{1}+6d)^{2}={a}_{1}({a}_{1}+35)}\end{array}\right.$,…(3分)
解得a1=6,d=4.    …(5分)
所以数列{an}的通项公式为an=4n+2(n∈N*).   …(6分)
(2)由(1)可得${S_n}=2{n^2}+4n$.           …(7分)
所以$\frac{1}{S_n}=\frac{1}{{2{n^2}+4n}}=\frac{1}{{2n({n+2})}}$=$\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$.     …(9分)
所以${T_n}=\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}+…+\frac{1}{{{S_{n-1}}}}+\frac{1}{S_n}$
=$\frac{1}{4}({1-\frac{1}{3}})+\frac{1}{4}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{4}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{4}({\frac{1}{n-1}-\frac{1}{n+1}})+\frac{1}{4}({\frac{1}{n}-\frac{1}{n+2}})$…(11分)
=$\frac{1}{4}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})$
=$\frac{3}{8}-\frac{1}{4}({\frac{1}{n+1}+\frac{1}{n+2}})$.   …(12分)

点评 本题考查数列的通项公式及前n项和的求法,是中档题,解题时要认真审题,注意裂项求和法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-2n.
(1)求a1,a2,a3的值;
(2)设bn=an+2,求证:数列{bn}是等比数列,
(3)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对任意x∈R,求不等式x2+kx+1>0恒成立的充要条件是k∈(-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax-1-lnx(a∈R).
(1)当$a=\frac{1}{4}$时,求函数y=f(x)的单调区间;
(2)若f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图所示是一个几何体的三视图,则该几何体的表面积为26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n和为Sn,若a1=-13,a5+a7=-6,则当Sn取最小值时,n等于(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示的程序框图,若输出S的值为127,则判断框中的条件可以是(  )
A.n≤5?B.n≤6?C.n≥5?D.n≥6?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=x2+(2k-6)x+2k2+1在区间(1,3),(3,+∞)各有一个零点,则k的取值范围是(-4,-2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知cos(π+x)=$\frac{3}{5}$,x∈(π,2π),则tan(π-x)=-$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案