精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

【答案】(1)详解解析;(2)2

【解析】试题分析:

(1)利用题意由直线一般方程的系数关系可得两直线垂直;

(2)由题意求得点到直线的距离为的最大值即可得的最大值为2.

试题解析:

(Ⅰ)易知直线的普通方程为: .

可变形为

即直线的直角坐标方程为: .

因为

根据两直线垂直的条件可知, .

(Ⅱ)当 时,

所以点在直线上.

设点到直线的距离为,由可知, 的最大值为.

于是

所以的最大值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的普通方程为,曲线的参数方程为为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)求曲线焦点的极坐标,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,设F1、F2分别为椭圆的左、右焦点,椭圆上任意一个动点M到左焦点F1的距离的最大值 为 +1 (Ⅰ)求椭圆C的方程;
(Ⅱ)设直线L的斜率为k,且过左焦点F1 , 与椭圆C相交于P、Q两点,若△PQF2的面积为 ,试求k的值及直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x)定义域内的任意x1 , x2(x1≠x2),有以下结论:
①f(0)=1;
②f(1)=0
③f(x1+x2)=f(x1)f(x2
④f(x1x2)=f(x1)+f(x2
⑤f( )<
⑥f( )>
当f(x)=2x时,则上述结论中成立的是(填入你认为正确的所有结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 +y2=1的左右焦点分别为F1 , F2 , 直线l过椭圆的右焦点F2与椭圆交于A,B 两点, (Ⅰ)当直线l的斜率为1,点P为椭圆上的动点,满足使得△ABP的面积为 的点P有几个?并说明理由.
(Ⅱ)△ABF1的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时直线l的方程,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,函数f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的单调性(不要求证明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若采用随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数:

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该运动员射击4次至少击中3次的概率为_________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是奇函数,且定义域为(﹣∞,0)∪(0,+∞).若x<0时,f(x)=﹣x﹣1.
(1)求f(x)的解析式;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面⊥平面

是等边三角形, .

(Ⅰ)证明:平面⊥平面

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案