精英家教网 > 高中数学 > 题目详情
2.已知f(x)=ax3+bx2+cx在区间[0,1]上是增函数,在区间(-∞,0]和[1,+∞)上是减函数,且f′($\frac{1}{2}$)=$\frac{3}{2}$
(1)求函数f(x)的解析式;
(2)若在区间[0,m](m>0)上恒有f(x)≤x,求实数m的取值范围.

分析 (1)由“f(x)在区间[0,1]上是增函数,在区间(-∞,0),(1,+∞)上是减函数”,则有f'(0)=f'(1)=0,再由f′($\frac{1}{2}$)=$\frac{3}{2}$求解;
(2)首先将“f(x)≤x,x∈[0,m]成立”转化为“x(2x-1)(x-1)≥0,x∈[0,m]成立”求解即可.

解答 解:(1)f'(x)=3ax2+2bx+c,由已知f'(0)=f'(1)=0,
即 $\left\{\begin{array}{l}{c=0}\\{3a+2b+c=0}\end{array}\right.$,解得 $\left\{\begin{array}{l}{c=0}\\{b=-\frac{3}{2}a}\end{array}\right.$,
∴f'(x)=3ax2-3ax,
∴f′($\frac{1}{2}$)=$\frac{3a}{4}$-$\frac{3a}{2}$=$\frac{3}{2}$,
∴a=-2,
∴f(x)=-2x3+3x2
(2)由f(x)≤x,即-2x3+3x2-x≤0,
∴x(2x-1)(x-1)≥0,
∴0≤x≤$\frac{1}{2}$或x≥1.
又f(x)≤x在区间[0,m]上恒成立,
∴0<m≤$\frac{1}{2}$.

点评 本题主要考查利用函数的极值点和导数值来求函数解析式及不等式恒成立问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为(  )
A.4π+16+4$\sqrt{3}$B.5π+16+4$\sqrt{3}$C.4π+16+2$\sqrt{3}$D.5π+16+2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三棱锥S-ABC及其三视图中的正视图与侧视图如图所示,若三棱锥S-ABC的四个顶点都在同一个球面上,则该球的表面积为(  )
A.84πB.72πC.60πD.48π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知三棱锥的三视图的正视图是等腰三角形,俯视图是边长为$\sqrt{3}$的等边三角形,侧视图是直角三角形,且三棱锥的外接球表面积为8π,则三棱锥的高为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为(  )
A.$\frac{20π}{3}$B.C.D.$\frac{19π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图为三棱锥S-ABC的三视图,其表面积为(  )
A.16B.8$\sqrt{6}$+6$\sqrt{2}$C.16$\sqrt{6}$D.16+6$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一空间几何体的三视图如图所示,该几何体的体积为12π+$\frac{{8\sqrt{5}}}{3}$,则该几何体的表面积的值为(  )
A.20π-8+4$\sqrt{14}$B.20π+2$\sqrt{14}$C.20π-8+2$\sqrt{14}$D.20π+4$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知定义在R上的函数f(x),其值域也是R,并且对任意x,y∈R,都有f(xf(y))=xy,则|f(2007)|等于(  )
A.0B.1C.20072D.2007

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,设区域D={(x,y)|0≤x≤1,0≤y≤1,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线y=$\sqrt{x}$与y=x2所围成阴影区域内的概率是(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案