精英家教网 > 高中数学 > 题目详情
20.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求曲线C上的动点M和直线l上的动点N的距离的最小值;
(2)求过曲线C上某一点与直线l平行的切线被曲线C关于y轴对称的曲线C′所截得的弦AB的长度.

分析 (1)分别把极坐标方程化为直角坐标方程、参数方程化为普通方程,求出圆心到直线的距离d,即可得出最小值;
(2)曲线C关于于y轴对称的曲线C′为(x+2)2+y2=4.设与直线l平行的圆C的切线为x-$\sqrt{3}$y+m=0,利用直线与圆相切的充要条件可得m,进而得出答案.

解答 解:(1)曲线C的极坐标方程是ρ=4cosθ,即ρ2=4ρcosθ,化为x2+y2=4x,平方为(x-2)2+y2=4,可得圆心C(2,0),半径r=2.
直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数),消去参数化为$x-\sqrt{3}y+3=0$,
∴圆心C到直线l的距离d=$\frac{|2-0+3|}{\sqrt{{1}^{2}+(-\sqrt{3})^{2}}}$=$\frac{5}{2}$,
∴曲线C上的动点M和直线l上的动点N的距离的最小值=d-r=$\frac{1}{2}$;
(2)曲线C关于于y轴对称的曲线C′为(x+2)2+y2=4.
设与直线l平行的圆C的切线为x-$\sqrt{3}$y+m=0,
则$\frac{|2-0+m|}{2}$=2,解得m=2或-6.
取m=2,可得切线x-$\sqrt{3}$y+2=0,
∵圆心(-2,0)经过上述直线.
∴所截得的弦AB的长度为圆的直径4.

点评 本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.针对时下的网购热,某单位对“喜欢网购与职工性别是否有关”进行了一次调查,其中男职工有60人,女职工人数是男职工人数的$\frac{1}{2}$,喜欢网购的男职工人数是男职工人数的$\frac{1}{6}$,喜欢网购的女职工人数是女职工人数的$\frac{2}{3}$.
(1)根据以上数据完成下面的2×2列联表.
喜欢网购不喜欢网购总计
男职工
女职工
总计
(2)能否在犯错误的概率不超过0.001的前提下认为喜欢网购与职工性别有关系?
参考数据及公式:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.直线x-ysinθ+1=0(θ∈R)的倾斜角范围是$[\frac{π}{4},\frac{3π}{4}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设不等式|2x-1|<1的解集为M,a∈M,b∈M
(1)试比较ab+1与a+b的大小
(2)设max表示数集A的最大数,h=max{$\frac{2}{\sqrt{a}}$,$\frac{{a}^{2}+{b}^{2}}{\sqrt{ab}}$,$\frac{2}{\sqrt{b}}$},求证h≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面上,Rt△ABC有勾股定理(即$∠C=\frac{π}{2}$,则有c2=a2+b2),类比到空间中,已知三棱锥P-DEF中,∠PDF=$∠PDE=∠EDF=\frac{π}{2}$,用S1,S2,S3,S分别表示△PDF,△PDE,△EDF,△PEF的面积,则有结论:S2=S12+S22+S32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.(x+$\frac{1}{x}$-1)5展开式的常数项为-51.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知点A(x1,x${\;}_{1}^{2}$),B(x2,x${\;}_{2}^{2}$)是抛物线y=x2上任意不同的两点,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{{x}_{1}^{2}+{x}_{2}^{2}}{2}$>$\frac{({x}_{1}+{x}_{2})^{2}}{2}$2成立,运用类比的方法可知,若点A(x1,sinx1),B(x2,sinx2)是函数y=sinx(x∈(0,π))图象上不同的两点,线段AB总是位于A,B两点之间函数y=sinx(x∈(0,π))图象的下方,则类似地有结论$\frac{sin{x}_{1}+sin{x}_{2}}{2}$<sin$\frac{{x}_{1}+{x}_{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x2+|x+1-a|,其中a为实常数.
(1)判断f(x)的奇偶性;
(2)若对于任意x∈R,使不等式f(x)>2|x-a|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2x的图象上任意不同的两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立.运用类比的思想方法可得下列结论
(1)f(x)=sinx,(0<x<π)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(2)f(x)=lnx有$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(3)f(x)=x3,(x>0)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(4)f(x)=tanx,(0<x<$\frac{π}{2}$)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
其中,正确的结论的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案