精英家教网 > 高中数学 > 题目详情
10.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2x的图象上任意不同的两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的上方,因此有结论$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立.运用类比的思想方法可得下列结论
(1)f(x)=sinx,(0<x<π)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(2)f(x)=lnx有$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(3)f(x)=x3,(x>0)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
(4)f(x)=tanx,(0<x<$\frac{π}{2}$)有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立
其中,正确的结论的个数为(  )
A.1个B.2个C.3个D.4个

分析 根据函数y=2x的图象可知,此函数的图象是向下凹的,即可得到$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立,再根据函数图象的特征,即可类比得到相应的不等式.

解答 解:∵函数y=2x上任意两点A,B两点之间函数图象的上方,
∴函数y=2x上的图象是向下凹的,
可得不等式$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$),
据此,(1)y=sinx(x∈(0,π))图象可以看出:y=sinx(x∈(0,π))图象是向上凸的,故可知$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)成立,故不正确;
(2)f(x)=lnx是向下凹的,有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立,故不正确;
(3)f(x)=x3,(x>0)是向下凹的,有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立,故正确;
(4)f(x)=tanx,(0<x<$\frac{π}{2}$)是向下凹的,有$\frac{f({x}_{1})+f({x}_{2})}{2}$>f($\frac{{x}_{1}+{x}_{2}}{2}$)成立,故正确.
故选:B.

点评 本题主要考查类比推理的知识点,还考查了数形结合思想,解答本题的关键是熟练掌握对数函数图象的凸凹性,常用方法是图象法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是$\left\{\begin{array}{l}{x=-3+tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数).
(1)求曲线C上的动点M和直线l上的动点N的距离的最小值;
(2)求过曲线C上某一点与直线l平行的切线被曲线C关于y轴对称的曲线C′所截得的弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和Sn=aqn+b(a,b为非零实数,q≠0且q≠1).
(1)当a,b满足什么关系式,{an}是等比数列;
(2)若{an}为等比数列,证明:以(an,Sn)为坐标的点都落在同一条直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=log${\;}_{\frac{1}{2}}$x,则使log${\;}_{\frac{1}{2}}$x>1的集合是(  )
A.{x|x$<\frac{1}{2}$}B.{x|x$>\frac{1}{2}$}C.{x|0$<x<\frac{1}{2}$}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.自点A(-3,3)发出的光线l射到x轴上,被x轴发射,其发射光线所在直线与圆M:x2+y2-4x-4y+7=0相切.
(1)求圆M的圆心和半径;
(2)求圆M关于x轴对称的圆方程;
(3)求光线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知tanα=3,则cos2α=(  )
A.$\frac{3}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值.
(2)在(1)的条件下,若存在实数n使f($\frac{1}{2}$n)≤m-f(-n)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}中,a1<0,S8=S13,使得前n项和Sn取到最小值的n的值为10或11.

查看答案和解析>>

同步练习册答案