已知设
(1)求函数的定义域;
(2)判断函数的奇偶性,并予以证明;
科目:高中数学 来源: 题型:解答题
已知函数,在时取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数m的取值范围;
(Ⅲ)若,是否存在实数b,使得方程在区间上恰有两个相异实数根,若存在,求出b的范围,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)设计一副宣传画,要求画面积为4840,画面的宽与高的比为,画面的上,下各留8空白,左右各留5空白,怎样确定画面的高于宽尺寸,能使宣传画所用纸张面积最小?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q= 最大?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知区间,函数的定义域为
(1)若函数在区间上是增函数,求实数的取值范围
(2)若,求实数的取值范围
(3)若关于的方程在区间内有解,求实数的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(满分12分)
某市居民生活用水标准如下:
用水量t(单位:吨) | 每吨收费标准(单位:元) |
不超过2吨部分 | m |
超过2吨不超过4吨部分 | 3 |
超过4吨部分 | n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com