精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知函数
(1)当时,求的最大值和最小值
(2)若上是单调函数,且,求的取值范围

(1)函数有最小值,函数有最小值;(2)

解析试题分析:(1)当时,
上单调递减,在上单调递增
时,函数有最小值
时,函数有最小值
(2)要使上是单调函数,则 
,又
解得: 
考点:本题考查了一元二次函数的值域及三角函数不等式
点评:对于一元二次函数的最值问题,往往利用其单调性处理,对于三角函数不等式,往往利用图象法求解

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用平均建筑费用平均购地费用,平均购地费用

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数 且关于的方程上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若对一切实数x恒成立,求实数a的取值范围。
(2)求在区间上的最小值的表达式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求函数的定义域;
(2)判断函数的奇偶性,并予以证明;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分16分)
如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为

(1)设,求证:
(2)欲使的面积最小,试确定点的位置.

查看答案和解析>>

同步练习册答案