精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:.已知甲、乙两地相距100千米。
(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

(1) 当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(2) 当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.

解析试题分析:(1)当x=40时,汽车从甲地到乙地行驶了小时,
要耗油(.
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(2)当速度为x千米/小时,汽车从甲地到乙地行驶了设耗油量为h(x)升,依题意得h (x)=(,
h’(x)=(0<x≤120)
令h’(x)=0,得x=80.
当x∈(0,80)时,h’(x)<0,h(x)是减函数;
当x∈(80,120)时,h’(x)>0,h(x)是增函数.
∴当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120)上只有一个极值,所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
考点:函数模型的运用
点评:解决的关键是理解导数的几何意义,以及运用导数来求解函数的单调性得到最值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

建造一断面为等腰梯形的防洪堤(如图),梯形的腰与底边所角为60°,考虑到防洪堤坚固性及石块用料等因素,设计其断面面积为m2,为了使堤的上面与两侧面的水泥用料最省,要求断面的外周长(梯形的上底BC与两腰长的和)最小.如何设计防洪堤,才能使水泥用料最省.
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

下图是一个二次函数的图象.写出的解集;

(2)求这个二次函数的解析式;
(3)当实数在何范围内变化时,在区间 上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店经销一种奥运会纪念品,每件产品的成本为30元,并且每卖出一件产品需向税务部门上交元(为常数,2≤a≤5 )的税收。设每件产品的售价为x元(35≤x≤41),根据市场调查,日销售量与(e为自然对数的底数)成反比例。已知每件产品的日售价为40元时,日销售量为10件。
(1)求该商店的日利润L(x)元与每件产品的日售价x元的函数关系式;
(2)当每件产品的日售价为多少元时,该商品的日利润L(x)最大,并求出L(x)的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(1)当时,求的最大值和最小值
(2)若上是单调函数,且,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知,若满足
(1)求实数的值;       (2)判断函数的单调性,并加以证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)已知函数是幂函数且在上为减函数,函数在区间上的最大值为2,试求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

列车提速可以提高铁路运输量.列车运行时,前后两车必须要保持一个“安全间隔距离d(千米)”,“安全间隔距离d(千米)”与列车的速度v(千米/小时)的平方成正比(比例系数k=).假设所有的列车长度l均为0.4千米,最大速度均为v0(千米/小时).问:列车车速多大时,单位时间流量Q= 最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)通常情况下,同一地区一天的温度随时间变化的曲线接近于函数的图像.2013年1月下旬荆门地区连续几天最高温度都出现在14时,最高温度为;最低温度出现在凌晨2时,最低温度为零下.
(Ⅰ)请推理荆门地区该时段的温度函数
的表达式;
(Ⅱ)29日上午9时某高中将举行期末考试,如果温度低于,教室就要开空调,请问届时学校后勤应该送电吗?

查看答案和解析>>

同步练习册答案