【题目】在△ABC中,a=x,b=2,B=45°,若此三角形有两解,则x的取值范围是( )
A.x>2
B.x<2
C.
D.
【答案】C
【解析】解: =2 ∴a=2 sinA
A+C=180°﹣45°=135°
A有两个值,则这两个值互补
若A≤45°,则C≥90°,
这样A+B>180°,不成立
∴45°<A<135°
又若A=90,这样补角也是90°,一解
所以 <sinA<1
a=2 sinA
所以2<a<2
故选C
利用正弦定理和b和sinB求得a和sinA的关系,利用B求得A+C;要使三角形两个这两个值互补先看若A≤45°,则和A互补的角大于135°进而推断出A+B>180°与三角形内角和矛盾;进而可推断出45°<A<135°若A=90,这样补角也是90°,一解不符合题意进而可推断出sinA的范围,利用sinA和a的关系求得a的范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆 , 是坐标原点, 分别为其左右焦点, , 是椭圆上一点, 的最大值为
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆交于两点,且
(i)求证: 为定值;
(ii)求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线与抛物线相切,且与轴的交点为,点.若动点与两定点所构成三角形的周长为6.
(Ⅰ) 求动点的轨迹的方程;
(Ⅱ) 设斜率为的直线交曲线于两点,当,且位于直线的两侧时,证明: .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两位学生参加数学竞赛培训,在培训期间他们参加的5次预寒成绩记录如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用茎叶图表示这两组数据;
(2)求甲、乙两人成绩的平均数与方差;
(3)若现要从中选派一人参加数学竞赛,你认为选派哪位学生参加合适,说明理由?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2x﹣cosx,{an}是公差为 的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2﹣a1a5=( )
A.0
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 底面,底面是直角梯形, , , , ,点在上,且.
(Ⅰ)已知点在上,且,求证:平面平面;
(Ⅱ)当二面角的余弦值为多少时,直线与平面所成的角为?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}中,a1=1,an+an+1=( )n , Sn=a1+4a2+42a3+…+4n﹣1an , 类比课本中推导等比数列前项和公式的方法,可求得5Sn﹣4nan= .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com