分析 (1)通过S=121可知南墙的长度为$\frac{121}{x}$米,进而投资为2×225×$\frac{121}{x}$×2+200×x×2+200×121,利用基本不等式计算即得结论;
(2)通过32000=2×225×$\frac{S}{x}$×2+200×x×2+200S,整理得S=-[(2x+9)+$\frac{169×9}{2x+9}$]+178,利用基本不等式计算即得结论.
解答 解:(1)依题意,南墙的长度为$\frac{121}{x}$米,
故投资为2×225×$\frac{121}{x}$×2+200×x×2+200×121
=24200+100($\frac{1089}{x}$+4x)
≥24200+200×$\sqrt{\frac{1089}{x}×4x}$
=37400(元),
当且仅当$\frac{1089}{x}$=4x即x=16.5时取最小值;
(2)依题意,32000=2×225×$\frac{S}{x}$×2+200×x×2+200S,
整理得:320=9•$\frac{S}{x}$+4x+2S,
∴S=$\frac{320-4x}{\frac{9}{x}+2}$
=$\frac{(-4{x}^{2}+320x+169×9)-169×9}{2x+9}$
=-2x+169-$\frac{169×9}{2x+9}$
=-[(2x+9)+$\frac{169×9}{2x+9}$]+178
≤-2$\sqrt{(2x+9)•\frac{169×9}{2x+9}}$+178
=-2×39+178
=100,
当且仅当2x+9=$\frac{169×9}{2x+9}$即x=15时S取最大值.
点评 本题考查函数模型的选择与应用,考查运算求解能力,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | ±1 | C. | $\sqrt{2}$ | D. | ±$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com