精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Sn,n∈N*.已知a1=1,a2,a3,且当n≥2时,4Sn+2+5Sn=8Sn+1+Sn-1.

(1)求a4的值;

(2)证明:为等比数列;

(3)求数列{an}的通项公式.

【答案】见解析

【解析】(1)解:当n=2时,4S4+5S2=8S3+S1

即4(a1+a2+a3+a4)+5(a1+a2)=8(a1+a2+a3)+a1

整理得a4

又a2,a3

所以a4.

(2)证明:当n≥2时,有4Sn+2+5Sn=8Sn+1+Sn-1

即4Sn+2+4Sn+Sn=4Sn+1+4Sn+1+Sn-1

∴4(Sn+2-Sn+1)=4(Sn+1-Sn)-(Sn-Sn-1),

即an+2=an+1an(n≥2).

经检验,当n=1时,上式成立.

为常数,且a2a1=1,

∴数列是以1为首项,为公比的等比数列.

(3)解:由(2)知,an+1an (n∈N*),

等式两边同乘2n

得2nan+1-2n-1an=2(n∈N*).

20a1=1,

∴数列{2n-1an}是以1为首项,2为公差的等差数列.

∴2n-1an=2n-1,

即an (n∈N*).

则数列{an}的通项公式为an (n∈N*).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155 到195之间),现将抽取结果按如下方式分成八组:第一组,第二组,…,第八组,并按此分组绘制如图所示的频率分布直方图,其中第六组和第七组还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.

(1)补全频率分布直方图;

(2)根据频率分布直方图估计这50位男生身高的中位数;

(3)用分层抽样的方法在身高为内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A{x|(x3)(xa)<0a∈R},集合B{xZ|x23x4<0}

(1)AB的子集个数为4,求a的范围;

(2)aZ,当AB时,求a的最小值,并求当a取最小值时AB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)写出的解析式与定义域

2)画出函数的图像;

3)试讨论方程的根的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率利润保费收入)的频率分布直方图如图所示:

(1)试估计这款保险产品的收益率的平均值;

(2)设每份保单的保费在20元的基础上每增加元,对应的销量为(万份).从历史销售记录中抽样得到如下5组的对应数据:

25

30

38

45

52

销量为(万份)

7.5

7.1

6.0

5.6

4.8

由上表,知有较强的线性相关关系,且据此计算出的回归方程为

(ⅰ)求参数的值;

(ⅱ)若把回归方程当作的线性关系,用(1)中求出的收益率的平均值作为此产品的收益率,试问每份保单的保费定为多少元时此产品可获得最大利润,并求出最大利润.注:保险产品的保费收入每份保单的保费销量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是 的中点.

(1)求证: 平面

(2)求二面角的大小;

(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:

年份

2011

2012

2013

2014

2015

储蓄存款(千亿元)

5

6

7

8

10

为了研究计算的方便,工作人员将上表的数据进行了处理,得到下表2:

时间代号

1

2

3

4

5

0

1

2

3

5

)求关于的线性回归方程;

)通过()中的方程,求出关于的回归方程;

)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?

(附:对于线性回归方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(A)B=,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集

(1)若,求实数q的取值范围

(2)若中有四个元素,求q的值.

查看答案和解析>>

同步练习册答案