精英家教网 > 高中数学 > 题目详情
已知命题p:?x∈R,ax2+ax+1>0及命题q:?x0∈R,x02-x0+a=0,若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:题p:?x∈R,ax2+ax+1>0,对a分类讨论:当a=0时,直接验证;当a≠0时,可得
a>0
△=a2-4a<0
.命题q:?x0∈R,x02-x0+a=0,可得△1≥0.由p∨q为真命题,p∧q为假命题,可得命题p与q必然一真一假.解出即可.
解答: 解:命题p:?x∈R,ax2+ax+1>0,当a=0时,1>0成立,因此a=0满足题意;当a≠0时,可得
a>0
△=a2-4a<0
,解得0<a<4.
综上可得:0≤a<4.
命题q:?x0∈R,x02-x0+a=0,∴△1=1-4a≥0,解得a≤
1
4

∵p∨q为真命题,p∧q为假命题,
∴命题p与q必然一真一假.
0≤a<4
a>
1
4
a<0或a≥4
a≤
1
4

解得a≤0或
1
4
<a<4

∴实数a的取值范围是a≤0或
1
4
<a<4
点评:本题考查了一元二次不等式与一元二次方程的解集与判别式的关系、简易逻辑的判定,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是∠A,∠B,∠C所对的边,a+c=2b,A-C=
3
.求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634

(Ⅰ)完成被调查人员的频率分布直方图;
(Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;
(Ⅲ)在(Ⅱ)的条件下,再记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈R,2x2+(m-1)x+
1
2
≤0”,命题q:“曲线C1
x2
m2
+
y2
2m+8
=1表示焦点在x轴上的椭圆”.若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两位学生参加数学竞赛培训,并根据成绩从中选派一人参加数学竞赛,在培训期间,进行了5次预赛,据统计,甲的5次预赛平均成绩为85,方差为28.6,乙的成绩记录如下:
序号12345
成绩8493868478
(Ⅰ)用茎叶图表示乙的成绩,并求乙成绩的中位数;
(Ⅱ)根据预赛成绩,你认为选派哪位学生参加更合适?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Mcos(ω+φ)(M>0,ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则g(x)=Msin(ωx+φ)在[a,b]上(  )
A、是增函数
B、是减函数
C、可以取得最小值-M
D、可以取得最大值M

查看答案和解析>>

科目:高中数学 来源: 题型:

若loga(a+1)<0(a>0,且a≠1),则函数f(x)=
1
1-ax
的定义域为(  )
A、(-∞,0)
B、(-1,0)
C、(0,+∞)
D、(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

我国城市空气污染指数范围及相应的空气质量类别见下表:

空气污染指数空气质量空气污染指数空气质量
0--50201--250中度污染
51--100251--300中度重污染
101--150轻微污染>300重污染
151----200轻度污染
我们把某天的空气污染指数在0-100时称作A类天,101--200时称作B类天,大于200时称作C类天.
下图是某市2014年全年监测数据中随机抽取的18天数据作为样本,其茎叶图如下:(百位为茎,十、个位为叶)

(Ⅰ)从这18天中任取3天,求至少含2个A类天的概率;
(Ⅱ)从这18天中任取3天,记X是达到A类或B类天的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知∠A=45°,∠B=75°,b=8,解这个三角形.

查看答案和解析>>

同步练习册答案