(本题满分12分) 已知圆
的圆心
在
轴上,半径为1,直线
,被圆
所截的弦长为
,且圆心
在直线
的下方.
(I)求圆
的方程;
(II)设
,若圆
是
的内切圆,求△
的面积
的最大值和最小值.
(I)
,即圆
.
(II)S(max)=6(1 + 1/4 )=15/2 ,S(min)=6(1+ 1/8)=27/4
【解析】本题是中档题,考查直线与圆的位置关系,三角形面积的最值的求法,考查计算能力.
(I)设圆心M(a,0),利用M到l:8x-6y-3=0的距离,求出M坐标,然后求圆M的方程;
(II)设A(0,t),B(0,t+6)(-5≤t≤-2),设AC斜率为k1,BC斜率为k2,推出直线AC、直线BC的方程,求出△ABC的面积S的表达式,求出面积的最大值和最小值.
解:
,即
.设圆心
,弦长的一半为
,半径
,
故
到直线
的距离
,又
,所以
,解得
或
,即
.又因为
在
下方,所以
,即圆
.
(II)设直线AC、BC的斜率分别为
,易知
,即
,则
直线AC的方程为
,直线BC的方程为
,联立解得点C横坐标为
,
因为
,所以△ABC的面积
.
∵AC、BC与圆M相切, ∴圆心M到AC的距离
,解得
,
圆心M到BC的距离
,解得
.
所以
, ![]()
∵-5≤t≤-2 ∴-2≤t+3≤1 ∴0≤(t+3)²≤4
∴-8≤t²+6t+1= (t+3)²-8≤-4 ∴S(max)=6(1 + 1/4 )=15/2
S(min)=6(1+ 1/8)=27/4
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com