精英家教网 > 高中数学 > 题目详情

如图,在四棱锥O-ABCD中,底面ABCD为菱形,OA⊥平面ABCD,E为OA的中点,F为BC的中点.

求证:(Ⅰ)平面BDO⊥平面ACO;

(Ⅱ)EF∥平面OCD.

答案:
解析:

  (Ⅰ)(Ⅱ)(Ⅲ)∵平面平面,所以

  ∵是菱形,∴,又,∴平面

  又∵平面,∴平面平面.6分

  (2)取中点,连接,则

  ∵是菱形,∴

  ∵的中点,∴

  ∴.∴四边形是平行四边形,∴

  又∵平面平面.∴平面.14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD是边长为1的正方形,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC中点,以A为原点,建立适当的空间直角坐标系,利用空间向量解答以下问题
(1)证明:直线BD⊥OC
(2)证明:直线MN∥平面OCD
(3)求异面直线AB与OC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A-OD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π3
,OA⊥底面ABCD,OA=2,M为OA的中点.
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的余弦值;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥O-ABCD中,底面ABCD四边长为1的菱形,∠ABC=
π4
,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点
(1)求三棱锥B-OCD的体积;
(2)求异面直线AB与MD所成角的大小;
注:若直线a⊥平面α,则直线a与平面α内的所有直线都垂直.

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.
(Ⅰ)证明:直线MN∥平面OCD;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求二面角A﹣OD﹣C的余弦值.

查看答案和解析>>

同步练习册答案