精英家教网 > 高中数学 > 题目详情
已知函数的图像与直线恰有三个公共点,则实数m的取值范围是( )
A.B.C.D.
D

试题分析:根据题意,求出直线y=x与射线y=2(x>m)、抛物线y=x2+4x+2在(-∞,m]上的部分的三个交点A、B、C,且三个交点必须都在y=f(x)图象上,由此不难得到实数m的取值范围。
根据题意,直线y=x与射线y=2(x>m)有一个交点A(2,2),

并且与抛物线y=x2+4x+2在(-∞,m]上的部分有两个交点B、C
,联解得B(-1,-1),C(-2,-2)
∵抛物线y=x2+4x+2在(-∞,m]上的部分必须包含B、C两点,
且点A(2,2)一定在射线y=2(x>m)上,才能使y=f(x)图象与y=x有3个交点
∴实数m的取值范围是-1≤m<2
故答案为D
点评:对于研究函数图像与函数图像的交点问题,一般利用解方程得到。本题给出分段函数的图象与直线y=x有3个交点,求参数m的取值范围,着重考查了直线与抛物线位置关系和分段函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点.
(Ⅰ)求椭圆E的方程;
(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交A,B且?若存在,写出该圆的方程,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点作斜率为1的直线,该直线与双曲线的两条渐近线的交点分别为A、B,若,则双曲线的渐近线方程为(  )
A.                 B.
C.                D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
抛物线的焦点与双曲线的右焦点重合.
(Ⅰ)求抛物线的方程;
(Ⅱ)求抛物线的准线与双曲线的渐近线围成的三角形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线的一条渐近线方程为,则其离心率为    

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

双曲线的实轴长、虚轴长与焦距的和为8,则半焦距的取值范围是        (答案用区间表示)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:与直线L:仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点的坐标分别是,直线相交于点,且直线与直线的斜率之差是,则点的轨迹方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

焦点在轴上,虚轴长为8,焦距为10的双曲线的标准方程是     ;

查看答案和解析>>

同步练习册答案