精英家教网 > 高中数学 > 题目详情
的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将沿CD翻折成直二面角,(1)求证:;(2)若点P在线段BC上,且BC=3BP,求证.
(1)已知E、F分别是AC和BC的中点,所以,
,且
(2),为二面角的平面角,
,所以,建系如图,
,,,
已知点P在线段BC上,且BC=3BP,所以,
,于是,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,动点P在正方体ABCD—A1B1C1D1的对角线BD1上,过点P作垂直于平面BB1D1D的直线,与正方体表面交于M、N,设BP=x,MN=y,则函数的图象大致是

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D为AC的中点。
(1)求证:B1C1⊥平面ABB1A1;
(2)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12)如图,四棱锥的底面为正方形,
平面,,,分别为,
的中点.   (1)求证平面.(2)求异面直线所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分PC,且分别交AC、PC于D、E两点,又PB=BC,PA="A" B.
(Ⅰ)求证:PC⊥平面BDE;
(Ⅱ)若点Q是线段PA上任一点,求证:BD⊥DQ;
(Ⅲ)求线段PA上点Q的位置,使得PC//平面BDQ.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,底面ABCD为菱形,底面的中点,的中点,求证:
(1)平面
(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

选修4-1:几何证明选讲
如图,已知是⊙的切线, 为切点,是⊙O的割线,与⊙交于 两点,圆心的内部,点的中点.
(1)求证:四点共圆;
(2)求的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若圆锥的表面积为平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图:圆锥形的杯子上面放着半圆形的冰淇淋,当冰淇淋融化能否外溢_________.

查看答案和解析>>

同步练习册答案