精英家教网 > 高中数学 > 题目详情
(12)如图,四棱锥的底面为正方形,
平面,,,分别为,
的中点.   (1)求证平面.(2)求异面直线所成角的正切值.

2,4,6

 

(1)略
(2)异面直线所成角的正切值是.
(1)证.如图,取的中点,连接,
分别为的中点,∴.
分别为的中点,∴.
,∴四点共面.……2分
分别为的中点.∴.…4分
平面,平面,
平面.   ……………………6分
(2)解.由(1)知,故所成角等于或其补角. …………7分
又易得,,                …………………………8分
平面,故,     …………………………9分
再由,    …………………11分
故异面直线所成角的正切值是.     …………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,已知矩形ABCD所在平面,M、N分别是AB、PC的中点。

(1)求证:平面PAD;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,AA1⊥面ABC,BC⊥AC,BC=AC=2,AA1=3,D为AC的中点.
(Ⅰ)求证:AB1//面BDC1
  (Ⅱ)求二面角C1—BD—C的余弦值;
(Ⅲ)在侧棱AA­1上是否存在点P,使得
CP⊥面BDC1?并证明你的结论.


 
 

 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
如图所示,在棱长为的正方体ABCD—A1B1C1D1中,E、F、H分别是棱BB1、CC1、DD1的中点。


 
(Ⅰ)求证:BH//平面A1EFD1

(Ⅱ)求直线AF与平面A1EFD1所成的角的正弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)求证:平面平面
(2)求正方形的边长;
(3)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B的中点.                                       
(1)证明:面⊥平面A1B1BA;
(2)证明:
(3)求棱柱ABC—A1B1C1被平面分成两部分
的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点,现将沿CD翻折成直二面角,(1)求证:;(2)若点P在线段BC上,且BC=3BP,求证.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分).如图所示,四棱锥PABCD的底面积ABCD是边长为1的菱形,
BCD=60°,ECD的中点,PA⊥底面积ABCDPA.
(Ⅰ)证明:平面PBE⊥平面PAB
(Ⅱ) 过PC中点F作FH//平面PBD, FH交平面ABCD 于H点,判定H点位于平面ABCD的那个具体位置?(无须证明)
(Ⅲ)求二面角ABEP的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱中, .
(1)求证: ;
(2)请在线段上确定一点P,使直线与平面所成角的正弦等于.

查看答案和解析>>

同步练习册答案