精英家教网 > 高中数学 > 题目详情
19.不等式|$\frac{1-x}{1+x}$|≥1的解集为(-∞,-1)∪(-1,0].

分析 原不等式等价于|x-1|≥|x+1|,即 (x-1)2≥(x+1)2,由此求得x的范围.

解答 解:不等式|$\frac{1-x}{1+x}$|≥1,等价于|x-1|≥|x+1|且x≠-1,即 (x-1)2≥(x+1)2 且x≠-1,
求得 x≤0且x≠-1,
故答案为:(-∞,-1)∪(-1,0].

点评 本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设F1,F2分别是椭圆:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,过点F1且斜率为1的直线l与椭圆相交于A,B两点,且|$\overrightarrow{A{F}_{2}}$|,|$\overrightarrow{AB}$|,|$\overrightarrow{B{F}_{2}}$|成等差数列.
(1)求椭圆的离心率;
(2)设点P(0,-1)满足|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某珠宝店失窃,甲、乙、丙、丁四人涉嫌被拘审,四人的口供如下:
甲:作案的是丙;
乙:丁是作案者;
丙:如果我作案,那么丁是主犯;
丁:作案的不是我.
如果四人口供中只有一个是假的,那么以下判断正确的是(  )
A.说假话的是甲,作案的是乙B.说假话的是丁,作案的是丙和丁
C.说假话的是乙,作案的是丙D.说假话的是丙,作案的是丙

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin(ωx+$\frac{π}{6}$)+sin(ωx-$\frac{π}{6}$)-cosωx(ω>0),图象上相邻两条对称轴间的距离为$\frac{π}{2}$.
(1)求f(x)的最小正周期;
(2)在△ABC中,a,b,c分别为角A,B,C所对的边,若f(B)=1(B$>\frac{π}{6}$),2sin2C=cosC+cos(A-B),求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=ex-ax-a,若f(x)≥0恒成立,实数a的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设α,β为互不重合的平面,m,n为互不重合的直线,给出下列四个命题:
①若m⊥α,n?α,则m⊥n;②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;④若m⊥α,α⊥β,m∥n,则n∥β,
其中所有正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出一个球放入乙罐,分别以A1、A2表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1球以B表示从乙罐中取出的球是红球的事件,则有:
①P(B)=$\frac{23}{30}$
②事件B与事件A1相互独立
③A1、A2互斥
④P(B)的值不能确定,因为它与A1、A2中究竟哪一个发生有关
正确的序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.指数函数y=5x的底数是(  )
A.yB.xC.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.各项均为正数的{an}前n项积为Tn=($\frac{1}{4}$)${\;}^{{n}^{2}-6n}$,bn=log2an,求{bn}前n项和Sn最大时,n的值.

查看答案和解析>>

同步练习册答案