精英家教网 > 高中数学 > 题目详情
4.设α,β为互不重合的平面,m,n为互不重合的直线,给出下列四个命题:
①若m⊥α,n?α,则m⊥n;②若m?α,n?α,m∥β,n∥β,则α∥β;
③若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β;④若m⊥α,α⊥β,m∥n,则n∥β,
其中所有正确命题的序号是①③.

分析 根据线面垂直的定义,可判断①;根据面面平行的判定定理,可判断②;根据面面垂直的性质定理,可判断③;根据空间线面垂直及线面平行的几何特征,可判断④.

解答 解:①根据线面垂直的定义:若m⊥α,n?α,则m⊥n,故正确;
②根据面面平行的判定定理:若m?α,n?α,m∩n=A,m∥β,n∥β,则α∥β,但m∥n时,不一定有α∥β,故错误;
③根据面面垂直的性质定理:若α⊥β,α∩β=m,n?α,n⊥m,则n⊥β,故正确;
④若m⊥α,α⊥β,m∥n,则n∥β或n?β,故错误;
故正确的命题的序号是:①③,
故答案为:①③

点评 本题考查的知识点是命题的真假判断与应用,此类题型往往综合较多的其它知识点,综合性强,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设P,Q为两个数集,P中含有0,2,5三个元素,Q中含有1,2,6三个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:对于m∈[-1,1],不等式a2-5a-3≥$\sqrt{m^2+8}$恒成立;命题q:关于x的不等式x2+ax+a2-3a-4<0的解集为A,A?B=[-3,1],若p∨q为真,且p∧q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列不等式中一定成立的是(  )
A.m+$\frac{1}{m}$≥2B.$\frac{n}{m}$+$\frac{m}{n}$≥2C.m2+n2≥2mnD.m+n≥2$\sqrt{mn}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式|$\frac{1-x}{1+x}$|≥1的解集为(-∞,-1)∪(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列命题:①存在实数α,使sinαcosα=1,②函数y=sin($\frac{3π}{2}$+x)是偶函数;③直线x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}$)的一条对称轴;④若α、β是第一象限的角,且α>β,则sinα>sinβ.
其中正确命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知f(x)=a+lnx,记g(x)=f′(x),h(x)=f(x)•g(x).
(1)已知函数h(x)在[1,+∞)上单调递减,求实数a的取值范围;
(2)①求证:当a=1时,f(x)≤x;
②当a=2时,若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.以下命题中
(1)A、B为两个定点,k为非零常数,|$\overrightarrow{PA}$|-|$\overrightarrow{PB}$|=k,则动点P的轨迹为双曲线一支;
(2)(ax)′=axlna
(3)“1<m<3”是“方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{3-m}$=1表示椭圆”的充要条件
(4)方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
(5)双曲线$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1与$\frac{{x}^{2}}{35}$+y2=1有相同的焦点.
其中真命题的序号为(4)(5)(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1,则四面体PABC的外接球的表面积为3π.

查看答案和解析>>

同步练习册答案