精英家教网 > 高中数学 > 题目详情
已知公比不为1的等比数列{an}的前n项和为Sn,若a1=1,且4a1,3a2,2a3成等差数列,则
Snan-3
的最大值是
7
7
分析:由题意可得6a2=4a1+2a3 ,即6q=4+2q2,解得 q=2.由此求得an和Sn 的解析式,化简
Sn
an-3
的解析式为2+
5
2n-1-3
,可得n=3时,有最大值7.
解答:解:∵公比不为1的等比数列{an}的前n项和为Sn,a1=1,且4a1,3a2,2a3成等差数列,
∴6a2=4a1+2a3 ,即6q=4+2q2,解得 q=2.
an=2n-1Sn
1×(1-2n)
1-2
=2n-1

Sn
2n-1-3
2n-1
2n-1-3
=2+
5
2n-1-3
,故当n=3时,有最大值7.
故答案为 7.
点评:本题主要考查等差数列的定义和性质,等比数列的前n项和公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•普陀区一模)定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
1
2

(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为
1
7
?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为数学公式
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为数学公式?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源:普陀区一模 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
1
2

(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为
1
7
?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学一模试卷(理科)(解析版) 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

科目:高中数学 来源:2009年上海市普陀区高考数学一模试卷(文科)(解析版) 题型:解答题

定义:将一个数列中部分项按原来的先后次序排列所成的一个新数列称为原数列的一个子数列.
已知无穷等比数列{an}的首项、公比均为
(1)试求无穷等比子数列{a3k-1}(k∈N*)各项的和;
(2)是否存在数列{an}的一个无穷等比子数列,使得它各项的和为?若存在,求出满足条件的子数列的通项公式;若不存在,请说明理由;
(3)试设计一个数学问题,研究:是否存在数列{an}的两个不同的无穷等比子数列,使得其各项和之间满足某种关系.请写出你的问题以及问题的研究过程和研究结论.

查看答案和解析>>

同步练习册答案