精英家教网 > 高中数学 > 题目详情
10.已知三角形ABC的顶点坐标为A(0,3)、B(-2,-1)、C(4,3).
(1)求AB边上的高所在的直线方程.
(2)求点C关于直线AB对称点的坐标.

分析 (1)先求出AB的斜率,再求出高的斜率,结合C点坐标,利用点斜式,可得答案;
(2)设点C关于直线AB对称点C′的坐标为(a,b),则AB为线段CC′的垂直平分线,根据垂直和平分构造方程组,解得答案.

解答 解:(1)直线AB的斜率为kAB=$\frac{-1-3}{-2}$=2,
设AB边上的高所在的直线的斜率为k
则k•kAB=-1,
故k=$-\frac{1}{2}$…(3分)
∴AB边上的高所在的直线方程为:y-3=$-\frac{1}{2}$(x-4)
即x+2y-10=0….(7分)
(2)设点C关于直线AB对称点C′的坐标为(a,b),
则AB为线段CC′的垂直平分线,
由直线AB的方程为:y=2x+3,即2x-y+3=0,
故$\left\{\begin{array}{l}\frac{b-3}{a-4}×2=-1\\ 2•\frac{a+4}{2}-\frac{b-3}{2}+3=0\end{array}\right.$,
解得:a=-$\frac{12}{5}$,b=$\frac{31}{5}$,
即点C关于直线AB对称点C′的坐标为(-$\frac{12}{5}$,$\frac{31}{5}$)

点评 本题考查的知识点是直线的方程,直线垂直时斜率的关系,点关于直线的对称点坐标,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在(0,+∞)上的单调递减函数,f′(x)是其导函数,若 $\frac{f(x)}{f′(x)}$>x,则下列不等关系成立的是(  )
A.f(2)<2f(1)B.3f(2)>2f(3)C.ef(e)<f(e2D.ef(e2)>f(e3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.直线x-y-1=0的斜率是1;倾斜角为45°; 在y轴上的截距是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=-$\sqrt{3}$+3i,则z在复平面所对应的坐标是(  )
A.(3,$\sqrt{3}$)B.($\sqrt{3}$,3)C.(3,-$\sqrt{3}$)D.(-$\sqrt{3}$,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题中,正确的命题个数是6.
①ac2>bc2⇒a>b
②a≥b⇒ac2≥bc2
③$\frac{a}{c}$>$\frac{b}{c}$⇒ac>bc
④若a<b<0,则a2>ab>b2
⑤$\left\{\begin{array}{l}{a>b}\\{ac>bc}\end{array}\right.$⇒c>0;
⑥$\left\{\begin{array}{l}{a>b}\\{\frac{1}{a}>\frac{1}{b}}\end{array}\right.$⇒a>0,b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}是首项为1,公差为d的等差数列,数列{bn}是首项为1,公比为q(q>1)的等比数列,且a2=b2,a3+b3=7.
(1)求数列{an}、{bn}的通项公式;
(2)数列{cn}满足cn=an+bn,Tn为数列{cn}前n项和,求Tn
(3)若不等式(-1)nx<(-1)n+1an+bn对于任意的n∈N+都成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数在(0,+∞)上是增函数的是(  )
A.$y={({\frac{1}{3}})^x}$B.y=-2x+5C.y=lnxD.y=$\frac{3}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则语文书不相邻的排法有(  )
A.36种B.48种C.72种D.144种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知$\overrightarrow a,\overrightarrow b$是(空间)非零向量,构造向量集合$P=\left\{{\left.{\overrightarrow p}\right|\overrightarrow p=t\overrightarrow a+\overrightarrow b,t∈{R}}\right\}$,记集合P中模最小的向量$\overrightarrow p$为$T(\overrightarrow a,\overrightarrow b)$.
(Ⅰ)对于$T(\overrightarrow a,\overrightarrow b)=t\overrightarrow a+\overrightarrow b$,求t的值(用$\overrightarrow a,\overrightarrow b$表示);
(Ⅱ)求证:$T(\overrightarrow a,\overrightarrow b)⊥\overrightarrow a$;
(Ⅲ)若$|\overrightarrow{a_1}|=|\overrightarrow{a_2}|=1$,且$<\overrightarrow{a_1},\overrightarrow{a_2}>=\frac{π}{3}$,构造向量序列${\overrightarrow a_n}=T(\overrightarrow{{a_{n-2}}},\overrightarrow{{a_{n-1}}})$,其中n∈N*,n≥3,请直接写出$|{\overrightarrow{a_n}}|$的值(用n表示,其中n≥3).

查看答案和解析>>

同步练习册答案