精英家教网 > 高中数学 > 题目详情
正三棱柱中,,D、E分别是的中点,

(1)求证:面⊥面BCD;
(2)求直线与平面BCD所成的角.
(1)见解析;(2).

试题分析:(1)易证⊥面,可得面⊥面
(2)面,过A作于点O,则于O,连接BO,即为所求二面角的一个平面角,
(1)在正三棱柱中,有,所以,可得面⊥面
(2)面于DF,过A作AO⊥DF于点O,则AO⊥面BCD于O,连接BO,即为所求二面角的一个平面角,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点.
 
(1)求证:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大小;
(3)求直线AB1与平面A1BD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A—BCC1B1中,等边三角形ABC所在平面与正方形BCC1B1所在平面互相垂直,D为CC1的中点.

(1)求证:BD⊥AB1
(2)求二面角B—AD—B1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱是直棱柱,.点分别为的中点.

(1)求证:平面;
(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥P-ABCD,底面ABCD是,边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:DN//平面PMB;
(2)证明:平面PMB平面PAD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题正确的是(  )
A.若两条直线和同一个平面所成的角相等,则这两条直线平行
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行
D.若两个平面都垂直于第三个平面,则这两个平面平行

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体AC1中,若点P在对角线AC1上,且P点到三条棱CD 、A1D1、 BB1的距离都相等,则这样的点共有  (   )
A.1 个        B.2 个      C.3 个         D.无穷多个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知m,n是两条不同直线,是两个不同平面,以下命题正确的是(   )
A.若
B.若
C.若
D.若

查看答案和解析>>

同步练习册答案