精英家教网 > 高中数学 > 题目详情
x∈R,且
x
2
+
1
2x
=cosθ
,则实数θ的值为(  )
A、2kπ,k∈Z
B、(2k+1)π,k∈Z
C、kπ,k∈Z
D、kπ+
π
2
,k∈Z
分析:由题意求出x∈R,
x
2
+
1
2x
的范围,得到cosθ的值,即可解出实数θ的值.
解答:解:x∈R,
x
2
+
1
2x
∈(-∞,-2]∪[2,+∞),所以cosθ=±1,
所以θ=kπ,k∈Z.
故选C.
点评:本题是基础题考查基本不等式的应用,三角函数的有界性的应用,常考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③在区间[-2,2]上任意取两个实数a,b,则关于x的二次方程x2+2ax-b2+1=0的两根都为实数的概率为1-
π
16

④过点(
1
2
,1)且与函数y=
1
x
图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有实根的概率为
19
36

④过点(
1
2
,1)且与函数y=
1
x
图象相切的直线方程是4x+y-3=0.
其中所有正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中
①不等式
x+1
(2x-1)≥0
的解集为{x|x≥
1
2
}

②“x>1且y>2”是“x+y>3”的充分不必要条件;
③函数y=
x2+2
+
1
x2+2
的最小值为2;
④命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
其中真命题的为
①②
①②
(将你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)定义域是{x|x
k
2
,k∈Z,x∈R
},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,当
1
2
<x<1
时:f(x)=3x
(1)判断f(x)的奇偶性,并说明理由;
(2)求f(x)在(0,
1
2
)上的表达式;
(3)是否存在正整,使得x∈(2k+
1
2
,2k+1)时,log3f(x)>x2-kx-2k有解,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1+2x
1-2x
(x∈R,且x≠-
1
2
)
的反函数是(  )

查看答案和解析>>

同步练习册答案