【题目】设函数,R.
(Ⅰ)求函数在处的切线方程;
(Ⅱ)若对任意的实数,不等式恒成立,求实数的最大值;
(Ⅲ)设,若对任意的实数,关于的方程有且只有两个不同的实根,求实数的取值范围.
【答案】(Ⅰ) (Ⅱ)-1(Ⅲ)或
【解析】
(Ⅰ)求出函数在处的导数后可得切线方程.
(Ⅱ)参变分离后求函数的最小值可得的最大值.
(Ⅲ)因为,故无零根,参变分离后考虑的图像与直线总有两个不同的交点,从而得到实数的取值范围.
(Ⅰ),. 且,所以在处的切线方程为.
(Ⅱ)因为对任意的实数,不等式恒成立.所以恒成立.
设,则
,
所以在,单调递增,在,单调递减.
所以,
因为,是方程的两根.
所以
. (其中)
所以的最大值为.
(Ⅲ)若对任意的实数,关于的方程有且只有两个不同的实根,
当,得,与已知矛盾.
所以有两根,即与有两个交点
令,则.
令,,则在单调递减,单调递增,所以.
(ⅰ)当时,即时,则,即在,单调递增,且当时,的取值范围为;当时,的取值范围为.此时对任意的实数,原方程恒有且只有两个不同的解.
(ⅱ)当时,有两个非负根,,所以在,,单调递增,单调递减,所以当时有4个交点,或有3个交点,均与题意不合,舍去.
(ⅲ)当时,则有两个异号的零点,,不妨设,则在,单调递增;在,单调递减.
当时,的取值范围为,
当时,的取值范围为,
所以当时,对任意的实数,原方程恒有且只有两个不同的解.
所以有,,得.
由,得,即.
所以,,.
故
.所以.
所以当或时,原方程对任意实数均有且只有两个解.
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是边长为的菱形,,点是棱的中点,,点在平面的射影为,为棱上一点,
(Ⅰ)求证:平面平面;
(Ⅱ)若为棱的中点,,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面底面ABCD,,,E,Q分别是BC和PC的中点.
(I)求直线BQ与平面PAB所成角的正弦值;
(Ⅱ)求二面角E-DQ-P的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时?的数学期望达到最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明口袋中有3张10元,3张20元(因纸币有编号认定每张纸币不同),现从中掏出纸币超过45元的方法有_______种;若小明每次掏出纸币的概率是等可能的,不放回地掏出4张,刚好是50元的概率为_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了位育龄妇女,结果如表.
非一线 | 一线 | 总计 | |
愿生 | |||
不愿生 | |||
总计 |
附表:
> | |||
由算得,参照附表,得到的正确结论是( )
A. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别有关”
B. 有以上的把握认为“生育意愿与城市级别有关”
C. 在犯错误的概率不超过的前提下,认为“生育意愿与城市级别无关”
D. 有以上的把握认为“生育意愿与城市级别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲,乙两人进行定点投篮活动,已知他们每投篮一次投中的概率分别是和,每次投篮相互独立互不影响.
(Ⅰ)甲乙各投篮一次,记“至少有一人投中”为事件A,求事件A发生的概率;
(Ⅱ)甲乙各投篮一次,记两人投中次数的和为X,求随机变量X的分布列及数学期望;
(Ⅲ)甲投篮5次,投中次数为ξ,求ξ=2的概率和随机变量ξ的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为“国际数学节”,其来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的“数学嘉年华”活动中,设计了如下的有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,则分别获得5个、10个、20个学豆的奖励.游戏还规定:当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功与否互不影响.
(1)求选手甲第一关闯关成功且所得学豆为零的概率;
(2)设该选手所得学豆总数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com