精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
2
x2-(2a+2)x+(2a+1)lnx

(I )求f(x)的单调区间;
(II)对任意的a∈[
3
2
5
2
],x1x2∈[1,2]
,恒有|f(x1)|-f(x2)≤λ|
1
x1
-
1
x2
|
,求正实数λ的取值范围.
(Ⅰ)f′(x)=x-(2a+2)+
2a+1
x
=
(x-2a-1)(x-1)
x
 (x>0)
令f′(x)=0,得x1=2a+1,x2=1                 …(1分)
①a=0时,f′(x)=
(x-1)2
x
≥0
,所以f(x)增区间是(0,+∞);
②a>0时,2a+1>1,所以f(x)增区间是(0,1)与(2a+1,+∞),减区间是(1,2a+1)
③-
1
2
<a<0时,0<2a+1<1,所以f(x)增区间是(0,2a+1)与(1,+∞),减区间是(2a+1,1)
④a≤
1
2
时,2a+1≤0,所以f(x)增区间是(1,+∞),减区间是 (0,1)…(5分)
(II)因为a∈[
3
2
5
2
]
,所以(2a+1)∈[4,6],由(1)知f(x)在[1,2]上为减函数.…(6分)
若x1=x2,则原不等式恒成立,∴λ∈(0.+∞)                  …(7分)
若x1≠x2,不妨设1≤x1<x2≤2,则f(x1)>f(x2),
1
x1
1
x2

所以原不等式即为:f(x1)-f(x2)≤λ(
1
x1
-
1
x2
),
即f(x1)-
λ
x1
≤f(x2)-
λ
x2
对任意的a∈[
3
2
5
2
],x1x2∈[1,2]
,恒成立
令g(x)=f(x)-
λ
x
,所以对任意的a∈[
3
2
5
2
],x1x2∈[1,2]
有g(x1)<g(x2)恒成立,
所以g(x)=f(x)-
λ
x
在闭区间[1,2]上为增函数               …(9分)
所以g′(x)≥0对任意的a∈[
3
2
5
2
],x1x2∈[1,2]
恒成立
而g′(x)=x-(2a+2)+
2a+1
x
+
λ
x2
≥0,即(2x-2x2)a+x3-2x+x2+λ≥0,
只需(2x-2x2
5
2
+x3-2x+x2+λ≥0,即x3-7x2+6x+λ≥0对任意x∈[1,2]恒成立,
令h(x)=x3-7x2+6x+λ,h′(x)=3x2-14x+6<0(x∈[1,2])恒成立,
∴h(x)在x∈[1,2]上为减函数,则h(x)min=h(2)=λ-8,
∴h(x)min=h(2)=λ-8≥0,
∴λ≥8.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案