精英家教网 > 高中数学 > 题目详情
12.直线l交椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1与M,N两点,椭圆的上顶点为B点,若△BMN的重心坐标为($\frac{1}{3}$,$\frac{1}{3}$),则直线l的方程是(  )
A.2x-4y+3=0B.2x-4y-3=0C.4x-2y-3=0D.x-y-5=0

分析 设M(x1,y1)、N(x2,y2),MN的中点为G,MN的方程为y=kx+b,结合题意可得G的坐标,再通过A、B在椭圆上、利用“点差法”求得直线l的斜率,再由直线方程的点斜式得答案.

解答 解:设M(x1,y1)、N(x2,y2),MN的中点为G,MN的方程为y=kx+b,
由椭圆方程易知B(0,2),
又△BMN的重心坐标为($\frac{1}{3}$,$\frac{1}{3}$),
由重心坐标公式可得$\frac{0+{x}_{1}+{x}_{2}}{3}$=$\frac{1}{3}$,$\frac{2+{y}_{1}+{y}_{2}}{3}$=$\frac{1}{3}$,
∴x1+x2=1,y1+y2=-1,则MN的中点G为($\frac{1}{2}$,-$\frac{1}{2}$),
又∵M、N在椭圆上,
∴${{x}_{1}}^{2}$+2${{y}_{1}}^{2}$=8,${{x}_{2}}^{2}+2{{y}_{2}}^{2}=8$,
两式相减得:(x1-x2)(x1+x2)+2(y1-y2)(y1+y2)=0,
又∵x1+x2=1,y1+y2=-1,
∴k=$\frac{{y}_{1}-{y}_{2}}{{x}_{1}-{x}_{2}}$=-$\frac{1}{2}$•$\frac{{x}_{1}+{x}_{2}}{{y}_{1}+{y}_{2}}$=-$\frac{1}{2}$•$\frac{1}{-1}$=$\frac{1}{2}$,
又∵直线MN过点G($\frac{1}{2}$,-$\frac{1}{2}$),
∴则直线l的方程是y+$\frac{1}{2}$=$\frac{1}{2}$(x-$\frac{1}{2}$),
整理得:2x-4y-3=0,
故选:B.

点评 本题主要考查了直线与椭圆相交的位置关系、三角形的重心坐标公式,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知直线x-y-1=0与椭圆(n-1)x2+ny2-n(n-1)=0(n>0)交于A、B两点,若以AB为直径的圆过椭圆的左焦点F,求实数的n值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在正方体ABCD-A1B1C1D1中,E,F分别是AA1,A1D1的中点,求:
(1)D1B与平面ABCD所成角的余弦值;
(2)EF与平面A1B1C1D1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合M={x|mx+n=3}.N={x|m-nx2=7},若M∩N={1},试求m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2-alnx(a∈R).
(1)若曲线f(x)在(1,f(1))处的切线与直线y=-x+5垂直,求实数a的值.
(2)?x0∈[1,e],使得$\frac{f({x}_{0})+1+a}{{x}_{0}}$≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:空间四边形ABCD中,H、G分别是AD、CD的中点,E、F分别在BC、AB边 上,且AF=$\frac{1}{3}$AB,CE=$\frac{1}{3}$BC
求证:EG、BD、FH三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=x2-2x-3,等差数列{an}中,a1=f(x-1),a${\;}_{2}=-\frac{3}{2}$,a3=f(x)
求:(1)x的值;
(2)通项an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.建筑师在完成砌墙后,经常用一根掉有铅锤的线,紧靠一平面来测试墙面是否与地面垂直;木工师在安装两相交板面后,经常用一把直三角板,用两直角边紧靠两板面,测试两板面是否垂直,你能分别解释这两个原理吗?
答案:(1)平面与平面垂直的判定定理
     (2)平面与平面垂直的定义.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知中心在坐标原点,焦点在x轴上的椭圆C的离心率为$\frac{1}{2}$,其一个顶点时抛物线x2=-4$\sqrt{3}$y的焦点.求椭圆C的标准方程.

查看答案和解析>>

同步练习册答案