(本小题满分14分)如图所示,在四棱锥中,平面,,
,,是的中点.
(1)证明:平面;
(2)若,,,求二面角的正切值.
解:(1)证明:∵平面,∴。
∵,是的中点
∴为△中边上的高,
∴。
∵,
∴平面。……………………6分
(2)方法1:延长DA、CB相交于点F,连接PF、DB
过点P作PE⊥BC,垂足为E,连接HE
由(1)知平面,则PH⊥BC
又∵PE∩PH=P,∴BC⊥平面PHE,∴BC⊥HE
∴∠PEH就是所求二面角P-BC-D的平面角……………9分
在△FDC中,∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∵,∴AB=2,∴BD=,
∴AB是△FCD的中位线,FD=CD
∴BD⊥CF
∴HE=
∵PH=1,∴……………14分
方法2:由(1)知平面,如图建立空间直角坐标系.
∵PH=1,AD=1,∴PD=
∵平面,,∴CD⊥平面PAD
∴CD⊥PD,∵PC=,∴CD=4
∴
设平面BCD、平面PBC的法向量分别为
则,设
∵,令,则
,设二面角P-BC-D为,
则,故
解析
科目:高中数学 来源: 题型:解答题
如图,在长方体中,,且.
(I)求证:对任意,总有;
(II)若,求二面角的余弦值;
(III)是否存在,使得在平面上的射影平分?若存在, 求出的值, 若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.
(1)求证:平面EFG⊥平面PDC;
(2)求三棱锥P-MAB与四棱锥P-ABCD的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面;
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图所示,在边长为12的正方形中,点在线段上,且,,作//,分别交,于点,,作//,分别交,于点,,将该正方形沿,折叠,使得与重合,构成如图2所示的三棱柱.
(Ⅰ)求证:平面;
(Ⅱ)求四棱锥的体积;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com