( 14分)如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到点,且在平面BCD上的射影O恰好在CD上.
(Ⅰ)求证:;
(Ⅱ)求证:平面平面;
(Ⅲ)求三棱锥的体积.
科目:高中数学 来源: 题型:解答题
(本题满分10分)
如图,四棱锥P-ABCD中,PA⊥平面ABCD,PA=AB=BC=2,E为PA的中点,过E作平行于底面的平面EFGH,分别与另外三条侧棱相交于点F、G、H. 已知底面ABCD为直角梯形,AD∥BC,AB⊥AD,∠BCD=135°.
(1)求异面直线AF与BG所成的角的大小;
(2)求平面APB与平面CPD所成的锐二面角的余弦值
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12M,高4M。养路处拟建一个更大的圆锥形仓库,以存放更多食盐。现有两种方案:一是新建的仓库的底面直径比原来大4M(高不变);二是高度增加4M(底面直径不变)。
(1)分别计算按这两种方案所建的仓库的体积;
(2)分别计算按这两种方案所建的仓库的表面积;
(3)哪个方案更经济些,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
本小题满分14分
正方形的边长为1,分别取边的中点,连结,
以为折痕,折叠这个正方形,使点重合于一点,得到一
个四面体,如下图所示。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(8分)如图,四棱锥底面是正方形且四个顶点在球的同一个大圆(球面被过球心的平面截得的圆叫做大圆)上,点在球面上且面,且已知。
(1)求球的体积;
(2)设为中点,求异面直线与所成角的余弦值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com