精英家教网 > 高中数学 > 题目详情

已知为偶函数,曲线过点
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

(1) ;(2)的单调递增区间,的单调递增区间.

解析试题分析:(1)先根据为偶函数,得到,恒有,进而计算出(也可根据二次函数的图像与性质得到对称轴,该对称轴为轴,进而得出),然后将点代入求出,进而写出的表达式,此时,根据条件有斜率为0的切线即有实数解,根据二次方程有解的条件可得,求解出的取值范围即可;(2)先根据时函数取得极值,得到,进而求出,然后确定导函数,由导数可求出函数的单调增区间,由可求出函数的单调减区间.
(1) 为偶函数,故对,总有,易得
又曲线过点,得,得        3分

曲线有斜率为0的切线,故有实数解
此时有,解得        5分
(2)因时函数取得极值,故有,解得 
,令,得
时, 上为增函数
时,上为减函数
时,上为增函数
从而的单调递增区间,的单调递增区间    10分.
考点:1.函数的奇偶性;2.导数的几何意义;3.函数的极值与导数;4.函数的单调性与导数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数在其定义域上为奇函数.
⑴求m的值;
⑵若关于x的不等式对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.
设常数,函数
=4,求函数的反函数
根据的不同取值,讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)画出的简图;
(2)若方程有三个不等实根,求k值的集合;
(3)如果时,函数的图象总在直线的下方,试求出k值的集合。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为自然对数的底数.
(Ⅰ)设是函数的导函数,求函数在区间上的最小值;
(Ⅱ)若,函数在区间内有零点,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=x+的图象为C1,C1关于点A(2,1)对称的图象为C2,C2对应的函数为g(x).
(1)求g(x)的解析式;
(2)若直线y=m与C2只有一个交点,求m的值和交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),
当0≤x≤1时,f(x)=x.
(1)求f(3)的值;
(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某幼儿园准备建一个转盘,转盘的外围是一个周长为k米的圆.在这个圆上安装座位,且每个座位和圆心处的支点都有一根直的钢管相连经预算,转盘上的每个座位与支点相连的钢管的费用为3k元/根,且当两相邻的座位之间的圆弧长为x米时,相邻两座位之间的钢管和其中一个座位的总费用为k元.假设座位等距分布,且至少有两个座位,所有座位都视为点,且不考虑其他因素,记转盘的总造价为y元.
(1)试写出y关于x的函数关系式,并写出定义域;
(2)当k=50米时,试确定座位的个数,使得总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是奇函数,则           .w.w.w.k.s.5.u.c.o.m   

查看答案和解析>>

同步练习册答案