精英家教网 > 高中数学 > 题目详情

(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.
设常数,函数
=4,求函数的反函数
根据的不同取值,讨论函数的奇偶性,并说明理由.

(1);(2)为奇函数,当为偶函数,当为非奇非偶函数.

解析试题分析:(1)求反函数,就是把函数式作为关于的方程,解出,得,再把此式中的互换,即得反函数的解析式,还要注意的是一般要求出原函数的值域,即为反函数的定义域;(2)讨论函数的奇偶性,我们可以根据奇偶性的定义求解,在这两种情况下,由奇偶性的定义可知函数具有奇偶性,在时,函数的定义域是,不关于原点对称,因此函数既不是奇函数也不是偶函数.
试题解析:(1)由,解得,从而


∴①当时,
∴对任意的都有,∴为偶函数
②当时,
∴对任意的都有,∴为奇函数
③当时,定义域为
∴定义域不关于原定对称,∴为非奇非偶函数
【考点】反函数,函数奇偶性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)当时,函数,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上函数为奇函数.
(1)求的值;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在上的奇函数,当时,
(1)求函数上的解析式;(2)若函数在区间上单调递增,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)已知在区间上单调递减,求的取值范围;
(2)存在实数,使得当时,恒成立,求的最大值及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为偶函数,曲线过点
(1)若曲线有斜率为0的切线,求实数的取值范围;
(2)若当时函数取得极值,确定的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)设n是正整数,r为正有理数.
(1)求函数f(x)=(1+x)r+1﹣(r+1)x﹣1(x>﹣1)的最小值;
(2)证明:
(3)设x∈R,记[x]为不小于x的最小整数,例如.令的值.
(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知函数       .

查看答案和解析>>

同步练习册答案