精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)当时,函数,求函数的值域.

(1)函数的定义域为;(2)函数是奇函数;(3)函数的值域为

解析试题分析:(1)具有解析式的函数的定义域无特殊情况下,通常就是使解析式有意义的自变量的取值范围;通常关注的是:①开偶次方时被开方的式子为非负;②作为分母不得为零;③作为对数的真数必须为正;④作为对数的底数必须为正且不为;(2)奇、偶性的判断,首先必须关注定义域,定义域关于原点对称是函数具备奇、偶性的必要条件,接下来用定义或等价定义来判断;(3)求函数值域的方法很多,在大题中经常通过探讨函数单调性来达到求函数值域的目的,这里即是.
试题解析:(1)由,则函数的定义域为.       4分
(2)当时,
因此,函数是奇函数.                                              9分
(3)设,当时,
则函数在区间上是减函数,
故函数在区间上也是减函数.                                12分
(证明单调性也可用定义)
                            13分
因此,函数的值域为.                                         14分
考点:函数的定义域、值域、单调性、奇偶性等的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.
(1)求证:f(x)为奇函数;       (2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线处切线的斜率;
(2)求的单调区间;
(3)当时,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,若函数恰有4个零点,则实数a的取值范围为        .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在其定义域上为奇函数.
⑴求m的值;
⑵若关于x的不等式对任意实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)本题有2个小题,第一小题满分6分,第二小题满分1分.
设常数,函数
=4,求函数的反函数
根据的不同取值,讨论函数的奇偶性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设f(x)是(-∞,+∞)上的奇函数,f(x+2)=-f(x),
当0≤x≤1时,f(x)=x.
(1)求f(3)的值;
(2)当-4≤x≤4时,求f(x)的图像与x轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

函数的反函数是          

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

是奇函数,则           .w.w.w.k.s.5.u.c.o.m   

查看答案和解析>>

同步练习册答案