已知定义在R上的函数f(x)对任意实数x、y恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-.
(1)求证:f(x)为奇函数; (2)求证:f(x)在R上是减函数;
(3)求f(x)在[-3,6]上的最大值与最小值.
(1)见解析;(2)见解析;(3)最大值为2,最小值为-4
解析试题分析:(1)欲证函数为奇函数,需寻找关系.由题中条件可知,需要从f(x)+f(y)=f(x+y)拼凑出与,令,便有,需求得,考虑到,令特殊值求;(2)同一样的思想,这里需要拼凑出与()不等于关系(需利用当x>0时,f(x)<0);(3)利用(1),(2)结论解(3).
试题解析:令,可得从而.
令,可得,即,
故为奇函数. 4分
证明:设,且,则,于是.
从而.
所以为减函数. 8分
解:由(2)知,所求函数的最大值为,最小值为.
,
.
于是在上的最大值为2,最小值为-4. 12分
考点:(1)函数奇偶性的证明(明确一般方法和过程);(2)函数单调性证明(紧扣证明过程);(3)求函数最值.
科目:高中数学 来源: 题型:解答题
已知函数f(x)=x2-2acos kπ·ln x(k∈N*,a∈R,且a>0).
(1)讨论函数f(x)的单调性;
(2)若k=2 04,关于x的方程f(x)=2ax有唯一解,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com