一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 ________.
科目:高中数学 来源: 题型:
小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为
,
,
,且每个问题回答正确与否相互独立.
(1)求小王过第一关但未过第二关的概率;
(2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.
![]()
(1)求小波参加学校合唱团的概率;
(2)求X的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
在图1中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有不同的读法种数是________.
构
建 建
和 和 和
谐 谐 谐 谐
社 社 社 社 社
会 会 会 会 会 会
创 创 创 创 创
美 美 美 美
好 好 好
未 未
来
查看答案和解析>>
科目:高中数学 来源: 题型:
等边三角形
的边长为3,点
、
分别是边
、
上的点,且满足
(如图1).将△
沿
折起到△
的位置,使二面角
为直二面角,连结
(如图2).
(Ⅰ)求证:![]()
平面
;
(Ⅱ)在线段
上是否存在点
,使直线
与平面
所成的角为
?若存在,求出
的长,若不存在,请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com