精英家教网 > 高中数学 > 题目详情

【题目】若数列{}的前n项和Sn=2-2

1)求数列{}的通项公式;

2)若bn=logSn=b1+b2++bn,对任意正整数nSn+n+m0恒成立,试求实数m的取值范围.

【答案】1= ;(2

【解析】

(1)运用数列的递推式和等比数列的定义和通项公式,即可得到所求;

(2)求得bn=2nlog2n=﹣n2n,由数列的错位相减法求和,可得Sn,再由不等式恒成立思想和不等式的性质,即可得到所求的范围.

(1)由Sn=2﹣2,得当n≥2时,Sn﹣1=2﹣2,两式相减,得=2﹣2

∴当n≥2时,=2,又n=1时,S1=a1=2a1﹣2,a1=2,

则{}是首项为2,公比为2的等比数列,∴=2n

(2)bn=2nlog2n=﹣n2n

∴﹣Sn=1×2+2×22+3×23+…+n2n,①

∴﹣2Sn=1×22+2×23+…+(n﹣1)2n+n2n+1,②

①﹣②,得Sn=2+22+23+…+2n﹣n2n+1﹣n2n+1=2n+1﹣n2n+1﹣2.

由Sn+(n+m)an+1<0,得2n+1﹣n×2n+1﹣2+n×2n+1+m×2n+1<0对任意正整数n恒成立,

∴m2n+1<2﹣2n+1,即m<﹣1对任意正整数n恒成立.∵﹣1>﹣1,

∴m≤﹣1,即m的取值范围是(﹣∞,﹣1].

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)问:能否为偶函数?请说明理由;

(2)总存在一个区间,当时,对任意的实数,方程无解,当时,存在实数,方程有解,求区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某射击运动员每次击中目标的概率是,在某次训练中,他只有4发子弹,并向某一目标射击.

(1)若4发子弹全打光,求他击中目标次数的数学期望;

(2)若他击中目标或子弹打光就停止射击,求消耗的子弹数的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为

1)求频率分布直方图中的值;

2)估计该企业的职工对该部门评分不低于80的概率;

3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设各项都是正数的等比数列{}Sn为前n项和,且S10=10S30=70,那么S40=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知过原点O的直线与函数的图象交于AB两点,分别过ABy轴的平行线与函数图象交于CD两点,若轴,则四边形ABCD的面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”系列进行市场销售量调研,通过对该品牌的系列一个阶段的调研得知,发现系列每日的销售量(单位:千克)与销售价格(元/千克)近似满足关系式,其中为常数.已知销售价格为6元/千克时,每日可售出系列15千克.

(1)求函数的解析式;

(2)若系列的成本为4元/千克,试确定销售价格的值,使该商场每日销售系列所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表中提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的四组对应数据.

6

8

10

12

2.5

3

4

4.5

(1)根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为45吨标准煤,试根据(1)中的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

同步练习册答案