精英家教网 > 高中数学 > 题目详情
已知向量
m
=(
3
cos
x
4
,cos
x
4
)
n
=(sin
x
4
,cos
x
4
)
,且
m
n
=
3
+1
2
.求cos(x+
π
3
)
的值.
分析:利用两个向量数量积公式化简
m
n
=
3
+1
2
可得sin(
x
2
+
π
6
)=
3
2
,再利用二倍角的余弦公式求出cos(x+
π
3
)
的值.
解答:解:由题意可得
m
n
=
3
+1
2
=
3
cos
x
4
sin
x
4
+cos2
x
4
=
3
2
sin
x
2
+
1
2
cos
x
2
+
1
2

sin(
x
2
+
π
6
)=
3
2

所以cos(x+
π
3
)=1-2sin2(
x
2
+
π
6
)=-
1
2
点评:本题主要考查两个向量数量积公式的应用,两角和差的正弦公式,二倍角公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(2sinx,1),
n
=(
3
cosx,2cos2x),函数f(x)=
m
n
-t.
(Ⅰ)若方程f(x)=0 在x∈[0,
π
2
]上有解,求t 的取值范围;
(Ⅱ)在△ABC 中,a,b,c分别是A,B,C 所对的边,当t=3 且f(A)=-1,b+c=2 时,求a 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函数f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)当x∈[0,π]时,求f(x)的单调递增区间;
(3)说明f(x)的图象可以由g(x)=sinx的图象经过怎样的变换而得到.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(-2sinx,cosx)
n
=(
3
cosx,2cosx)
,函数f(x)=1-
m
n

(1)求f(x)的最小正周期; 
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•威海一模)已知向量
m
=(2cosx,
3
cosx-sinx),
n
=(sin(x+
π
6
),sinx)
,且满足f(x)=
m
n

(I)求函数y=f(x)的单调递增区间;
(II)设△ABC的内角A满足f(A)=2,且
AB
AC
=
3
,求边BC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(2sinx,cosx),
n
=(
3
cosx,2cosx)定义函数f(x)=loga
m
n
-1)(a>0,a≠1).
(1)求函数f(x)的最小正周期;
(2)确定函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案