精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,左焦点为,右顶点为,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,过P点向椭圆的长轴做垂线,垂足为Q求线段PQ的中点的轨迹方程;
(1)由已知得椭圆的半长轴=2,半焦距c=,则半短轴b="1.     "
又椭圆的焦点在x轴上, ∴椭圆的标准方程为
(2)设线段PQ的中点为M(x,y) ,点P的坐标是(x0,y0),
那么:,即
由点P在椭圆上,得,
∴线段PQ中点M的轨迹方程是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图所示, 底面直径为的圆柱被与底面成的平面所截,其截口是一个椭圆,则这个椭圆的离心率为               

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直角坐标系中有一直角梯形的中点为,以为焦点的椭圆经过点.
(1)求椭圆的标准方程;
(2)若点,问是否存在直线与椭圆交于两点且,若存在,求出直线的斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的方程为:,其焦点在轴上,离心率.
(1)求该椭圆的标准方程;
(2)设动点满足,其中M,N是椭圆上的点,直线OM与ON的斜率之积为,求证:为定值.
(3)在(2)的条件下,问:是否存在两个定点,使得为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线过椭圆的一个焦点和一个顶点,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如题21图,已知离心率为的椭圆过点M(2,1),O为坐标原点,平行于OM的直线交椭圆C于不同的两点A、B。
(1)求面积的最大值;
(2)证明:直线MA、MB与x轴围成一个等腰三角形。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的焦点坐标为【   】
A.(-3,0)B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知椭圆的焦点坐标为,长轴等于焦距的2倍.
(1)求椭圆的方程;
(2)矩形的边轴上,点落在椭圆上,求矩形绕轴旋转一周后所得圆柱体侧面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆中心为坐标原点,焦点位于x轴上,分别为右顶点和上顶点,是左焦点;当时,此类椭圆称为“黄金椭圆”,其离心率为.类比“黄金椭圆”可推算出“黄金双曲线”的离心率为              .

查看答案和解析>>

同步练习册答案