分析 通过求导数便可判断f(x)在R上单调递增,并且容易判断为奇函数,从而可以由f(sinθ)+f(cosθ)≥0便可得到sinθ≥-cosθ,进一步便可得到$sin(θ+\frac{π}{4})≥0$,这样根据正弦函数的图象及周期性便可得到θ的取值范围.
解答 解:f′(x)=1+cosx≥0;
∴f(x)在R上为增函数;
又f(-x)=sin(-x)-x=-(sinx+x)=-f(x);
∴f(x)为奇函数;
∴由f(sinθ)+f(cosθ)≥0得,f(sinθ)≥f(-cosθ);
∵f(x)在R上为增函数;
∴sinθ≥-cosθ;
∴sinθ+cosθ≥0;
∴$\sqrt{2}sin(θ+\frac{π}{4})≥0$,$sin(θ+\frac{π}{4})≥0$;
∴$2kπ≤θ+\frac{π}{4}≤π+2kπ,k∈Z$;
∴$2kπ-\frac{π}{4}≤θ≤\frac{3π}{4}+2kπ,k∈Z$;
∴θ的取值范围为$[2kπ-\frac{π}{4},\frac{3π}{4}+2kπ]$,k∈Z.
故答案为:[2kπ-$\frac{π}{4}$,$\frac{3π}{4}+2kπ$],k∈Z.
点评 考查根据导数符号判断函数单调性的方法,余弦函数的值域,奇函数的定义,及对奇函数定义的运用,以及增函数的定义,两角和的正弦公式,熟悉正弦函数的图象及周期性.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | cos2α | B. | $\frac{1}{2}$cos2α | C. | sin2α | D. | $\frac{1}{2}$sin2α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com